
Tivoli®

IBM Tivoli Directory Integrator 6.1:

Users Guide

SC32-2568-00

���

Tivoli®

IBM Tivoli Directory Integrator 6.1:

Users Guide

SC32-2568-00

���

Note

Before using this information and the product it supports, read the general information under Appendix F,

“Notices,” on page 283.

First Edition (April 2006)

This edition applies to version 6.1 of the IBM Tivoli Directory Integrator and to all subsequent releases and

modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2003,2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Preface

This document contains the information that you need to understand the concepts underlying

IBM® Tivoli® Directory Integrator 6.1.

Who should read this book

This book is intended for users that have already read the IBM Tivoli Directory Integrator 6.1:

Getting Started to design solutions based on IBM Tivoli Directory Integrator 6.1. The reader

should be familiar with the concepts and the administration of the systems that the developed

solution will connect to.

The reader should be familiar with the concepts and the administration of the systems that

the developed solution will connect to. Depending on the solution, these could include, but

are not limited to, one or more of the following products, systems and concepts:

v IBM Directory Server

v IBM Java™ Runtime Environment (JRE) or Sun Java Runtime Environment

v Microsoft® Active Directory

v PC and UNIX® operating systems

v Security management

v Internet protocols, including HTTP, HTTPS and TCP/IP

v Lightweight Directory Access Protocol (LDAP) and directory services

v A supported user registry

v Authentication and authorization

Publications

Read the descriptions of the IBM Tivoli Directory Integrator library and the related

publications to determine which publications you might find helpful. After you determine the

publications you need, refer to the instructions for accessing publications online.

IBM Tivoli Directory Integrator library

The publications in the IBM Tivoli Directory Integrator library are:

IBM Tivoli Directory Integrator 6.1: Getting Started

A brief tutorial and introduction to IBM Tivoli Directory Integrator 6.1.

IBM Tivoli Directory Integrator 6.1: Administrator Guide

Includes complete information for installing the IBM Tivoli Directory Integrator.

Includes information about migrating from a previous version of IBM Tivoli Directory

© Copyright IBM Corp. 2003,2006 iii

Integrator. Includes information about configuring the logging functionality of IBM

Tivoli Directory Integrator. Also includes information about the security model

underlying the Remote Server API.

IBM Tivoli Directory Integrator 6.1: Users Guide

Contains information about using the IBM Tivoli Directory Integrator 6.1 tool.

Contains instructions for designing solutions using the IBM Tivoli Directory Integrator

tool (ibmditk) or running the ready-made solutions from the command line

(ibmdisrv). Also provides information about interfaces, concepts and

AssemblyLine/EventHandler creation and management. Includes examples to create

interaction and hands-on learning of IBM Tivoli Directory Integrator 6.1.

IBM Tivoli Directory Integrator 6.1: Reference Guide

Contains detailed information about the individual components of IBM Tivoli

Directory Integrator 6.1 AssemblyLine (Connectors, EventHandlers, Parsers, Plug-ins,

and so forth).

IBM Tivoli Directory Integrator 6.1: Problem Determination Guide

Provides information about IBM Tivoli Directory Integrator 6.1 tools, resources, and

techniques that can aid in the identification and resolution of problems.

IBM Tivoli Directory Integrator 6.1: Messages Guide

Provides a list of all informational, warning and error messages associated with the

IBM Tivoli Directory Integrator 6.1.

IBM Tivoli Directory Integrator 6.1: Password Synchronization Plug-ins Guide

Includes complete information for installing and configuring each of the four IBM

Password Synchronization Plug-ins: Windows Password Synchronizer, Sun ONE

Directory Server Password Synchronizer, IBM Directory Server Password

Synchronizer, Domino Password Synchronizer and Password Synchronizer for UNIX

and Linux®. Also provides configuration instructions for the LDAP Password Store

and MQe Password Store.

IBM Tivoli Directory Integrator 6.1: Release Notes

Describes new features and late-breaking information about IBM Tivoli Directory

Integrator 6.1 that did not get included in the documentation. IBM Tivoli Directory

Integrator 6.1.

Related publications

Information related to the IBM Tivoli Directory Integrator is available in the following

publications:

v IBM Tivoli Directory Integrator 6.1 uses the JNDI client from Sun Microsystems. For

information about the JNDI client, refer to the Java Naming and Directory Interface™ 1.2.1

Specification on the Sun Microsystems Web site at http://java.sun.com/products/jndi/1.2/
javadoc/index.html.

v The Tivoli Software Library provides a variety of Tivoli publications such as white papers,

datasheets, demonstrations, redbooks, and announcement letters. The Tivoli Software

Library is available on the Web at: http://www.ibm.com/software/tivoli/library/

iv IBM Tivoli Directory Integrator 6.1: Users Guide

http://java.sun.com/products/jndi/1.2/javadoc/index.html
http://java.sun.com/products/jndi/1.2/javadoc/index.html
http://www.ibm.com/software/tivoli/library/

v The Tivoli Software Glossary includes definitions for many of the technical terms related to

Tivoli software. The Tivoli Software Glossary is available, in English only, from the Glossary

link on the left side of the Tivoli Software Library Web page http://www.ibm.com/
software/tivoli/library/

Accessing publications online

The publications for this product are available online in Portable Document Format (PDF) or

Hypertext Markup Language (HTML) format, or both in the Tivoli software library:

http://www.ibm.com/software/tivoli/library.

To locate product publications in the library, click the Product manuals link on the left side of

the Library page. Then, locate and click the name of the product on the Tivoli software

information center page.

Information is organized by product and includes READMEs, installation guides, user’s

guides, administrator’s guides, and developer’s references as necessary.

Note: To ensure proper printing of PDF publications, select the Fit to page check box in the

Adobe Acrobat Print window (which is available when you click File->Print).

Accessibility

Accessibility features help a user who has a physical disability, such as restricted mobility or

limited vision, to use software products successfully. With this product, you can use assistive

technologies to hear and navigate the interface. After installation you also can use the

keyboard instead of the mouse to operate all features of the graphical user interface.

Contacting IBM Software support

Before contacting IBM Tivoli Software support with a problem, refer to IBM System

Management and Tivoli software Web site at:

http://www.ibm.com/software/sysmgmt/products/support/

If you need additional help, contact software support by using the methods described in the

IBM Software Support Guide at the following Web site:

http://techsupport.services.ibm.com/guides/handbook.html

The guide provides the following information:

v Registration and eligibility requirements for receiving support

v Telephone numbers and e-mail addresses, depending on the country in which you are

located

v A list of information you must gather before contacting customer support

Preface v

http://www.ibm.com/software/tivoli/library/
http://www.ibm.com/software/tivoli/library/
http://www.ibm.com/software/tivoli/library/
http://www.ibm.com/software/sysmgmt/products/support/
http://techsupport.services.ibm.com/guides/handbook.html

vi IBM Tivoli Directory Integrator 6.1: Users Guide

Contents

Preface iii

Who should read this book iii

Publications iii

IBM Tivoli Directory Integrator library . . iii

Related publications iv

Accessing publications online v

Accessibility v

Contacting IBM Software support v

Chapter 1. Introduction 1

General concepts 1

Program components and interface 1

The Config Editor 2

The Server 2

IBM API 2

Script objects 2

Chapter 2. IBM Tivoli Directory Integrator

concepts 3

The Entry object (TDI data model) 3

The AssemblyLine 4

AssemblyLine flow and Hooks 9

Starting an AssemblyLine in the Config

Editor – ibmditk 14

Starting an AssemblyLine from another AL

or script 14

Accessing AL components inside the

AssemblyLine 14

AssemblyLine parameter passing 14

Sandbox 18

Connectors 19

Connector Schema 20

How do Connectors share data (the work

Entry)? 21

Connector modes 21

Component states 35

Adapters 36

Parsers 44

Character Encoding conversion 44

Function Components (FC) 45

The Function Interface 45

Link Criteria 46

Simple Link Criteria 46

Advanced Link Criteria 47

EventHandlers 49

Scripting 49

Controlling the flow of an AssemblyLine 49

When scripting is needed 50

Integrating scripting into your solution . . 50

How scripting affects execution 52

Control points for scripting 53

Scripting in TDI 54

Accessing your own Java classes 62

Scripting in JavaScript 63

Using binary values in scripting 63

Using date values in scripting 63

Using floating point values in scripting . . 64

Examples 65

Hooks 65

Enabling or disabling Hooks 66

Override Hooks 66

Error Hooks 66

List of Hooks 67

Server Hooks 75

Deltas 78

Unique attribute 78

Delta flags 79

Deltas and compute changes 79

Delta process 80

Delta Table structures 81

System Store 82

Configure RDBMS database servers as

System Store 82

User Property Store 84

Delta Store 85

Checkpoint/Restart Store 85

Store Factory methods 85

Property Store methods 87

UserFunctions (system object) methods . . 88

Property Store 88

Inheritance 88

Attribute Mapping 89

Null Behavior 90

Conn object 92

Important Config and system objects 94

Controlling the number of threads . . . 94

Checkpoint/Restart 95

Saving and storing AssemblyLine state

information 96

Limitations 98

© Copyright IBM Corp. 2003,2006 vii

Restart implications 104

Restart actions 104

The Config 108

Remote Configs 108

Parameter substitution with Expressions 108

Include/Namespaces 109

Securing Configs, passwords and

sensitive data 109

Expressions 111

Expressions in component parameters . . 114

Expressions in LinkCriteria 115

Expressions in Branches, Loops and

Switch/Case 116

Scripting with Expressions 116

Secure Sockets Layer support 117

Securing the connection between IBM

Tivoli Directory Integrator 6.1 and servers

with SSL (IBM Tivoli Directory Integrator

as a client) 118

Securing the connection between client

and IBM Tivoli Directory Integrator 6.1

with SSL (IBM Tivoli Directory Integrator

as a server) 118

IBM Tivoli Directory Integrator and

Microsoft Active Directory SSL

configuration 119

Obtaining a secure JDBC connection in an

IBM Tivoli Directory Integrator 6.1

AssemblyLine using IDS Server 121

Obtaining a secure JDBC connection in an

IBM Tivoli Directory Integrator 6.1

AssemblyLine using NetDirect

JDataConnect 124

Chapter 3. The Config Editor 127

Config Editor Interface 127

Main panel 127

Solution Directory 128

Java Libraries 129

Java Properties 129

Includes 130

Properties 130

System Store 130

Preferences 131

Resources 134

Using the Config Editor 134

List controls 136

Tab controls 137

Keyboard controls 137

Moving between details windows . . . 137

Main menu selections 138

Script editor windows 142

Configurations (Config) 144

Creating a new Config 145

Opening an existing Config 145

Saving a Config 145

Renaming a Config 145

Closing a Config 145

Copying elements between open Configs

(or folders) 145

Config folder management 146

Packaging, Library and Reports 147

Library 148

Config and AssemblyLine Reports . . . 149

AssemblyLines 149

Managing AssemblyLines 149

AssemblyLine configuration 149

Testing AssemblyLines 165

Debugging 165

Working with AssemblyLine files before

processing is completed 169

AssemblyLine Reports 170

Connectors 170

Connector management 170

Using Connectors in AssemblyLines

(AssemblyLine Connectors) 170

Library Connectors 188

Scripted Connectors 189

Parsers 191

Script Library 192

Properties 194

Configuration 195

Java Libraries 196

Preferences 198

Includes 198

Parameter Substitution 199

Properties 200

Advanced Parameter Substitution with

Expressions 200

Logging 207

Log Levels 212

Parameter labels in the Connector and

Parser panels 212

Chapter 4. Web Services Suite 215

TDI WS Suite philosophy 215

Components and tools 215

Usage and scenarios 218

Simple or Complex Types 218

Simple or Customized workflow 218

viii IBM Tivoli Directory Integrator 6.1: Users Guide

Using the WS Suite 218

WS Suite Considerations 220

WS Provisioning and WS Trust 221

Chapter 5. TDI Examples 225

Scripted Outlook Connector using

COMProxy 225

Example code 225

See also 228

JavaScript Connector 228

Example code 228

See also 228

JavaScript Parser 229

Example code 229

See also 229

Writing a new Connector Interface 229

Script-based Connector 229

Java-based Connector 230

Copying directories with the LDAP

Connector 230

Chapter 6. TDI Command line options 231

Config Editor 231

Server 231

Command Line Interface (CLI) 234

Appendix A. Enhancements and changes

in 6.1 235

Introduction 235

Compatibility 235

Replace of Rhino JavaScript with IBMJS 235

TMSXML format for all messages . . . 235

Cloudscape/Derby upgrade 235

Tombstones 235

New Hooks 236

New Hooks for Function Components 236

Operation Abandon Hook 236

Changes for Add operations (AddOnly

and Update modes): 236

Changes for modify operations (Update

mode): 236

JavaScript 236

Improved error messages 237

No support of script languages other then

JavaScript 237

Library Loader enhancements 237

Custom specification of JAR files 237

Restructuring of the TDI “jars”

sub-directory 238

TDI Server Hooks 239

Loop/Branch/Switch 239

Improve termination and cleanup for critical

errors 239

Custom exit/return codes 240

Access via TDI API calls 240

Securing Configs, passwords and sensitive

data 241

Default and user-defined parameter

protection 241

New API methods 241

Sensitive data in logs and traces 242

Autocommit for the Delta Engine 242

Server API Notification Enhancements . . . 243

Server API Script Object 243

Remote Config Editing 243

TDI Config Folder 243

Load for editing 243

Configuration locking 244

Load for editing with temporary Config

Instance 244

New Server API event for configuration

update 244

New API calls 244

Server shutdown event 244

Custom server API event notifications 245

Authentication 245

External properties file from command line 246

Logging and Problem Determination

Enhancements 247

Character encoding for all File Appenders 247

Custom Appender support 247

Log4j logs folder 247

Miscellaneous Problem Determination

Enhancements 247

Connector Pooling 248

Enhance Connector Initialization Failure

Handling 248

Disabling AssemblyLine components via the

Task Call Block (TCB) 249

AssemblyLine Operations 249

Defining AL Operations 249

Calling AL Operations 250

Resource Library 251

Publishing AssemblyLines (Adapters) . . . 251

Publishing a package 251

EventHandler transition 251

Library Feature and Copy/Paste for

Attribute Maps 251

Copy/Paste of Attributes 251

Copy/Paste for Config objects 252

Contents ix

System Queue 252

System Queue Connector 252

Complex XML Handlers 252

Command Line Interface (CLI) 253

Config Reports 253

Property Store Framework 253

Accessing Properties from JavaScript . . 253

Expressions 253

Java Function Component 253

General Enhancements to TCP-based objects 254

SSL support enhancements 254

TCP headers as Attribute values 254

TCP Connection Backlog parameter . . . 254

Secure Remote Command Line FC 254

DSML v2 enhancements 254

SendEMail Function Component 254

Common Base Event (CBE) Function

Component 255

JDBC Connector enhancements 255

JMS Connector supports other JMS providers 255

HTTP Server Connector enhancements . . . 255

AssemblyLine Connector and Function

Component 255

FTP Connector 255

Harmonized Change Detection handling . . 256

Administration and Monitoring Console . . 256

New Java version 256

AssemblyLine Debugger 256

Password Change Plugins 256

Response section removed from

AssemblyLine Flow 257

TDI can be started as more then one

Windows service 257

Iterators can be used in Flow section . . . 257

Custom Method invocation 257

Appendix B. Using CloudScape database 259

Embedded CloudScape 259

Overriding the CloudScape defaults . . . 259

Appendix C. Increasing the memory

available to the Virtual Machine 261

Appendix D. Double byte character sets

in IBM Tivoli Directory Integrator 263

Appendix E. Dictionary of terms 265

IBM Tivoli Directory Integrator terms . . . 265

Appendix F. Notices 283

Trademarks 285

x IBM Tivoli Directory Integrator 6.1: Users Guide

Chapter 1. Introduction

Examples complementing this manual are in the install_directory/examples directory in the

IBM Tivoli Directory Integrator.

General concepts

The following is a discussion of some of the general concepts that can be found in the IBM

Tivoli Directory Integrator documentation:

v “The AssemblyLine” on page 4

v “Connectors” on page 19

v “Parsers” on page 44

v “Function Components (FC)” on page 45

v “Link Criteria” on page 46

v “EventHandlers” on page 49

v “Scripting” on page 49

v “Accessing your own Java classes” on page 62

v “Hooks” on page 65

v “Deltas and compute changes” on page 79

v “System Store” on page 82

v “Inheritance” on page 88

v “Attribute Mapping” on page 89

v “Important Config and system objects” on page 94

v “Checkpoint/Restart” on page 95

v “The Config” on page 108

v “Debugging” on page 165

v Appendix E, “Dictionary of terms,” on page 265

Program components and interface

IBM Tivoli Directory Integrator (TDI) consists of two Java programs:

v The Config Editor (CE)

v The Server

TDI is a tool for creating and enforcing 'rules' for how data flows between systems. These

rules are stored in XML documents called Configs that you write, test and maintain using the

© Copyright IBM Corp. 2003,2006 1

Config Editor (CE). You deploy a Config by starting a TDI Server and pointing it at one or

more Configs to run. Configs can be assigned to a Server at start-up, or dispatched to it via

the API.

Each individual rule in TDI is called an AssemblyLine (AL), and each AL is built by connecting

together a series of components that handle the various services, data stores, transports, APIs

and formats covered by this rule.

The Config Editor

The Config Editor is started by initiating the ibmditk batch-file or script, which sets up the

Java VM environment parameters and then starts the Config Editor.

This tool is used to build and manage your integration solution Configs, and enables you to

work with multiple Configs at the same time. Configs are stored as highly structured XML

documents and can be encrypted.

v See Chapter 3, “The Config Editor,” on page 127 for more information about the IBM Tivoli

Directory Integrator Config Editor.

The Server

When you have a Config, you can then deploy your solution with the IBM Tivoli Directory

Integrator Server batch-file or script, ibmdisrv, which sets up the Java VM environment and

then launches the Server.

In addition to commands placed in the Config itself, there are a number of command line

options for controlling server behavior and its handling of the Config. Once a TDI Server is

running, you can manage it with AMC v3 or the Command Line Interface (CLI), or directly

through calls to the TDI API.

v See Chapter 6, “TDI Command line options,” on page 231.

IBM API

Full technical documentation (″JavaDocs″) of all available internal Java objects (which can be

reached from script language) is found in the installation package (root_directory\docs\api\
index.html file). It can be launched in a browser by selecting Help>Low Level API in the

Config Editor.

Note that you can specify which browser TDI should use under File > Edit Preferences >

Misc Settings.

Script objects

Script objects are available everywhere inside the AssemblyLines (provided their context is

valid). Some major objects are described in the IBM Tivoli Directory Integrator 6.1: Reference

Guide.

2 IBM Tivoli Directory Integrator 6.1: Users Guide

Chapter 2. IBM Tivoli Directory Integrator concepts

An IBM Tivoli Directory Integrator Config describes the various rules for how data is to be

transformed and transferred. Each rule is called an AssemblyLine (AL), and each AL includes

one or more components that have been configured and linked together to form a solution.

These components can be used to access systems and services, like Connectors and Functions,

or components that control how data flows down an AssemblyLine, such as Branches, Loops

and Switches. There is also an AttMap component for changing data attributes, and a place to

drop in your own script logic called a Script component. Finally, both Connectors and

Functions can use Parsers to turn incoming bytestreams into structured data (for example,

parsing XML) or the other way around (for example, writing XML).

Note: Additionally, a pre-6.1 Config can contain components called EventHandlers (EHs).

EHs reside outside AssemblyLines and are used to service incoming events, launch

AssemblyLines and then dispatch this event data to them. This is considerably less

efficient than having ALs that do their own event-handling. With this version of IBM

Tivoli Directory Integrator the transition is complete from the concept of EventHandlers

to 'event-handling' directly in AssemblyLines. This is done using Connectors in Server

or Iterator mode. Although EventHandlers are still handled by the Server, and can still

be edited in the Config Editor for pre-6.1 Configs, future versions will eventually drop

this support; so therefore best practice is to replace EventHandlers in TDI solutions as

quickly as possible.

IBM Tivoli Directory Integrator components are described in the following sections, along

with other relevant concepts.

The Entry object (TDI data model)

One of the cornerstones of understanding TDI is knowing how data is stored and transported

internally in the system. This is done using an object called an Entry. The Entry object can be

thought of as a 'Java bucket' that can hold any number of Attributes (none, one or many).

Attributes are also bucket-like objects in TDI. Each Attribute can contain zero or more values,

these being the actual data values that are read from (and written to) connected systems.

Attribute values are Java objects as well – strings, integers and timestamps; whatever is

needed to match the native type of this data value – and a single Attribute can readily hold

values of different types. However, the values of a single Attribute will tend to be of the same

type in most data sources.

Although this Entry-Attribute-value paradigm matches nicely to the concept of LDAP directory

entries , this is also how rows in databases are represented inside TDI, as are records in files,

© Copyright IBM Corp. 2003,2006 3

IBM Lotus Notes documents and HTTP pages received over the wire. All data – from any

source that TDI works with – is stored internally as Entry objects with Attributes and their

values.

There are a handful of Entry objects that are created and maintained by TDI. The most visible

instance is called the Work Entry, and it serves as the main data carrier in an AssemblyLine

(AL). This is the bucket used to transport data down the AL, passing from one component to

the next.

The Work Entry is available for use in scripting through the pre-registered variable 'work',

giving you direct access to the Attributes being handled by an AssemblyLine (and their

Values). Furthermore, all Attributes carried by the Work Entry are displayed in the Config

Editor in the 'Work Entry' window under the DataFlow component list of an AssemblyLine.

The AssemblyLine

An AssemblyLine is a set of components strung together to move and transform data. It is the

'unit-of-work' in TDI and typically represents a flow of information from one or more data

sources to one or more targets. Data to be processed is fed into the AL one Entry at a time,

where these Entries carry Attributes with values coming from directory entries, database rows,

emails, Notes documents, records or similar data objects. Each Entry carries Attributes that

hold the data values read from fields/columns in the source system. These Attributes are

renamed, reformatted and/or computed as processing flows from one component to the next

in the AL. New information can be 'joined' from other sources and all or parts of the

transformed data can be written to target stores or sent to target systems as desired.

It is important to keep in mind that the AssemblyLine is designed and optimized for working

with one item at a time. However, if you want to do multiple updates or multiple deletes (for

example, processing more than a single item at the time) then you must write AssemblyLine

scripts to do this. If necessary, this kind of processing can be implemented using your choice

of script languages, Java libraries and standard IBM Tivoli Directory Integrator functionality

(such as pooling the data to a sorted datastore, for example with the JDBC Connector, and

then reading it back and processing it with a second AssemblyLine).

The AssemblyLine has a 'DataFlow' tab in the Config Editor (CE). This is where the list of

components that make up this AL are kept. The components list is divided into two sections:

Feeds and Flow. Feeds holds Connectors that are used to 'feed' the AL with a stream of data

entries. For example, a FileSystem Connector that is reading and parsing a CSV file, or an

HTTP Server Connector servicing connections with browser clients. The Flow section holds

Connector and other components that are used to process and aggregate data coming from

Feeds.

Note: For an introduction to how an AssemblyLine operates, see IBM Tivoli Directory

Integrator 6.1: Getting Started.

4 IBM Tivoli Directory Integrator 6.1: Users Guide

And now an important note on the naming of your Config elements (AssemblyLines,

Connectors, Functions, Attributes and so forth); All components in an AL are automatically

registered as script variables. So if you have a Connector called "ReadHRdump" then you can

access it directly from script via the ReadHRdump variable. As a result, you will want to

name your AL components as you would script variables: Use alpha-numeric characters only,

do not start the name with a number, and do not use special national characters (for example,

å, ä), separators (apart from underscore '_'), whitespace, and so forth.

There is always an alternative method for getting hold of an AL component - for example, the

task.getConnector() function - but a conscious naming convention is always advisable.

Starting an AssemblyLine in TDI is a fairly costly operation, as it involves the creation of a

new Java thread and usually setting up connections to one or more data sources. Consider

carefully if your solution design could be made to work with fewer rather then more distinct

AssemblyLines, where each AssemblyLine does more work, for example by using Branches or

Switches to define multiple operations handled by a single AL. Note that each operation can

still be implemented as a separate AssemblyLines, but these can be embedded 'hot-and-ready'

into a single AL that dispatches work to them by using the AL Connector or AL Function.

This also allows you to leverage features like Global Connector Pools to manage resource

usage and boost performance and scalability.

AssemblyLines can include the following:

Connectors

These are used to 'abstract away' the details of some system or store, giving you the

same set of access features. This lets you work with a broad range of disparate

technologies and formats in a consistent and predictable way. A typical AL has one

Connector providing input and at least one Connector writing data out. A rich

Connector library is one of the strengths of IBM Tivoli Directory Integrator but you

can of course write your own Connectors (just look at the Script Connector or Script

Parser to see how easy this is).

 Each Connector is designed for a specific protocol, API or transport and handles

marshalling data between the native type of the connected system and Java objects.

Unlike the other components, Connectors have a 'mode' setting that determines how

this Connector will access its connected system.

Note: AssemblyLines can consist of as many, or as few, Connectors as required to

solve the specific dataflow, there is no limitation in the system. However, best

practice is to keep an AssemblyLine as simple as possible in order to maximize

maintainability.

When used in an AL, Connectors provide an "Initialize" option to control when the

component is set up (for example, connections made, resources bound, etc.). By

default, all Connectors initialize when the AssemblyLine starts up (AL Startup Phase).

 Connectors in Server or Iterator mode appear in the Feeds section—although Iterators

can also be used in the Flow. A Feeds Connector is responsible for 'feeding' the Flow

Chapter 2. IBM Tivoli Directory Integrator concepts 5

section components with a new Work Entry for each cycle that the AL makes. The

Work Entry is passed from component to component in the Flow section (following

any Branching logic you've implemented) until the end of the Flow is reached. At this

point, End-of-Cycle behavior kicks in and, for example, the Iterator gets the next

Entry from its source and passes it to the Flow section for a new cycle.

 While an Iterator in the Feeds section will actually drive the Flow, an Iterator in the

Flow section will simply get the next Entry and offer its data Attributes for Input

Mapping into the Work Entry.

 Feeds section behavior is different for Server and Iterator modes: An Iterator expects

to be the first component running in your AL, and it will only read its next Entry if

the Work Entry does not already exist. If the AL has been passed an Initial Work

Entry, then Iterators will not read any data for this first cycle. It also means that

Iterators run in a series, with the second one beginning to return Entries once the first

one has reached end-of-data and returned nothing (null).

 Server mode, on the other hand, causes the Connector to launch a Server listener

thread (for example, to an IP port or event-notification callback) and then pass control

to the next Feeds Connector.

 When you call an AL (locally or remote) using the AssemblyLine Function component

(AL FC), if you use the Manual/Cycle mode then only the Flow section components

are used each time the FC executes the call.

 There is a Connectors folder in the Config Browser where you can maintain your

library of configured Connectors. This is also where Connector Pools are defined.

Functions (Function components, FCs)

A Function is a component much like a Connector, except that it does not have a

mode setting. Whereas Connectors provide standard access verbs for connected

systems (Lookup, Delete, Update, etc.), Functions on the other hand only performs a

single operation, like pushing data through a Parser, dispatching work to another

AssemblyLine or making a web service call. Functions can appear anywhere in the

Flow section of an AL. The "Functions" library folder in the Config Browser can be

used to manage your library of Function Components.

 Like Connectors, Functions in AssemblyLines provide an Initialize option to decide

when this component powers up. By default, Functions initialize during AL start-up.

Scripts (Script components, SCs)

A Script is a block of JavaScript that can be placed in an AssemblyLine just like a

Connector or Function. Unlike the other types of AL components, the Script does not

have any predefined behavior or mode; this is entirely up to your code to implement

as desired. A library of Scripts can be stored under the Scripts library folder in the

Config Browser.

AttributeMaps (AttMaps)

These are free-standing collections of individual Attribute Maps (simple, Advanced

and Expressions). These can be copied to and from other Attribute Maps or any Input

6 IBM Tivoli Directory Integrator 6.1: Users Guide

or Output Map in an Connector or Function, individually or as a whole. To copy

individual Attribute mappings, select them in the map, right-click and choose Copy.

Then right-click in another Attribute Map and select Paste. To copy an entire Input or

Output Map, click Copy to library. You can drag any AttributeMap from the library

folder in the Config Browser and onto the Inherit from area for an Input/Output

Map in order to inherit from this map.

 Branch Components

Branch components affect the order in which the other components (Connectors,

Scripts, Functions, AttributeMaps and other Branch components) are executed. Branch

components come in three flavors:

v Simple (also called just 'Branch'),

v Loops (Branches that loop)

v Switches (Branches that share the same expression).

Branches can appear anywhere in the Flow section, but there is no library folder for

them in the Config Browser.

The same script call is used to exit any type of Branch: system.exitBranch(). See

“Exiting a Branch (or Loop or the AL Flow)” on page 13 for more details.

 The three Branch component types are:

Branches

 While each type of Branch lets you define alternate routes for AssemblyLine

processing, this simplest form lets you ask the question "If this situation

occurs, then take this action". You define what "situation occurs" means by

setting up Conditions that must be met, for example, by comparing data

values or checking the result of some operation. If the conditions are true, the

components attached under this Branch are executed.

 The Branch provides an interface that allows you to define Conditions based

on any data in the TDI Server: Attribute values, parameters settings,

externally accessible properties, and any information available via JavaScript

(like operating system calls for disk or memory usage). Multiple Conditions

are ANDed or ORed, depending on the Match Any check box setting.

 This simplest form of Branch component also supports three sub-type settings,

IF, ELSE-IF and ELSE, offering a drop-down for selecting the sub-type to use.

 The available options are:

IF Can appear anywhere within the AssemblyLine Flow, the IF Branch

provides a side-track for processing to follow if Conditions are true.

Once the components under the Branch are executed, control passes

the first component after this Branch. If you do not want this to

happen, you must either add an ELSE or ELSE IF Branch, or exit the

Branch with a scripted call to system.exitBranch().

Chapter 2. IBM Tivoli Directory Integrator concepts 7

ELSE-IF

Identical to the IF Branch, except it can only appear immediately

following an IF or ELSE-IF Branch.

ELSE Only allowed immediately after an IF or ELSE-IF Branch, the ELSE

Branch has no Conditions. Its components are processed only if no

preceding IF or ELSE-IF Branch was true.

 As mentioned above, you can prematurely exit a Branch by means of

scripting, as described in “Exiting a Branch (or Loop or the AL Flow)” on

page 13.

Loop

 The Loop component provides functionality for adding cyclic logic within an

AssemblyLine. Loops can be configured for three modes of operation: based

on Conditions (like a simple Branch), based on a Connector (in Iterator or

Lookup mode) or based on the values of an Attribute:

Conditional

Just as with a simple Branch, you can define Conditions that control

Loop behavior. The Loop will continue to cycle as long as the

Conditions are met, and will stop as soon as they fail. The details

window for Loops is the same as for the simple Branches described in

the previous section.

Connector

This method lets you set up a Connector in either Iterator or Lookup

mode, and will cycle through your Loop flow for each Entry returned.

The Details pane of this type of Loop contains the Connector tabs

necessary to configure it, connect & discover attributes and set up the

Input Map.

 Note that you have a parameter called Init Options where you can

instruct the AL to either:

v Do Nothing which means that the Connector will not be prepared

in any way between AL cycles.

v Initialize and Select/Lookup causing the Connector to be

re-initialized for each AL cycle.

v Select/Lookup Only keeps the Connector initialized, but redoes

either the Iterator select or the Lookup, depending on the Mode

setting.

Note also there is a Connector Parameters tab which functions

similarly to an Output Map in that you can select which Connector

parameters are to be set from work Attribute values.

8 IBM Tivoli Directory Integrator 6.1: Users Guide

This brings us to the topic of how Looping with an Iterator differs

from doing so based on Lookup mode. Both options perform searches

that create in a result set returned for looping. For Iterator mode, the

result set is controlled exclusively by the parameter settings of this

component. Lookup mode on the other hand uses Link Criteria to

define search/match rules. Since it frees you from having to code

Hooks like On No Match or On Multiple Found, this is the preferred

way of doing searches that may not always return one (and just one)

matched Entry.

Attribute Value

By selecting any Attribute available in the work Entry, the Loop flow

will be executed for each of its values. Each value is passed into the

Loop in a new work Entry attribute named in the second parameter.

This option allows you to easily work with multi-valued attributes,

like group membership lists or email.

 You can prematurely exit a Loop by means of scripting, as described in

“Exiting a Branch (or Loop or the AL Flow)” on page 13.

Switch

Unlike expressions used in the Conditions of Branches and Loops, the Switch

expression can result in more values than just true or false. For example, you

could Switch on the value of an Attribute, or the operation requested when

this AL was called from an another AssemblyLine or process. Under the

Switch component, you add a Case for each value of the Switch expression

that you want to handle. So for example, if you set up the Switch to use the

delta operation code in the Work Entry, your Cases would be for values like

"add", "delete" and "modify".

 You can prematurely exit a Switch's Case by means of scripting, as described

in “Exiting a Branch (or Loop or the AL Flow)” on page 13.

 In addition to the above components that can appear alone in an AssemblyLine, there is also a

Parser component. Parsers are used by Connectors and Functions to interpret the structure in

a bytestream, or to write structure to one.

AssemblyLine flow and Hooks

AssemblyLines provide built-in automated behavior that helps you rapidly build and deploy

your data flows. This automated behavior is detailed in the TDI Flow Diagrams in the IBM

Tivoli Directory Integrator Reference Guide. In addition, Connectors and Functions have their

own behaviors (Connector behavior depending on the mode setting) and these are also shown

in the Flow Diagrams.

Throughout these built-in logic flows are numerous waypoints where you can add your own

scripted logic to extend built-in behavior, or to override it complete. These waypoints are

called "Hooks" and are available for customizing under the Hooks tab of all Connectors and

Functions, as well as of the AssemblyLine itself.

Chapter 2. IBM Tivoli Directory Integrator concepts 9

When an AssemblyLine is launched, it goes through three phases: Start up, Data flow and

Shutdown. During Start up, Prolog Hooks are available for reconfiguring components before

they are initialized. In the Data flow phase, each Work Entry fed into the AssemblyLine is

passed down the Flow components for processing.

Finally, during Shutdown, Epilog Hooks can be used to carry out end-of-job work, like

checking and reporting on error status, or storing state data for the next time the AL is

started.

Start-up Phase

At this point the Server has been instructed to load and run an AssemblyLine. The

Server uses the 'blueprint' stored in the Config to set up the AL. If a TaskCallBlock

(TCB) has been passed into the AssemblyLine, then its contents are evaluated (which

can result in changes to AL component parameters). At this point, Prolog Hook flows

are initiated.

Global Prologs

First, if any "Global" Prologs are defined then these are evaluated. Global

Prologs are Scripts under the library folder in the Config Browser that have

been included in the AssemblyLine. This is typically done in the

AssemblyLine's Config tab by selecting the Scripts to run at AL start-up. After

all Global Prologs are finished, the AL Prolog Hooks are called.

AL Prolog Hooks (Before Initialization)

First the AssemblyLine Prolog - Before Initialization Hooks is invoked. After

this, all Connectors and Functions configured to Initialize "at startup" go

through their initialization phase, which also invokes their Prolog Hooks, as

see in the next point.

Connector/Function Initialization

The initialization sequence is performed for each Connector and Function

with Initialization set to "at startup". These are powered up in turn as defined

by their order in the AssemblyLine. For each Connector/Function the flow is

as follows:

1. The component’s Prolog – Before Initialize Hook is called.

2. The component is powered up (for example, connecting to its underlying

data source, target or API).

3. If this is a Connector in Iterator mode, then the Prolog – Before Selection

Hook is processed, and the Connector performs the entry selection (fires

off a data source specific call, like performing an SQL SELECT or an

LDAP search).

4. For Iterators, the Prolog – After Selection Hook is now evaluated.

5. Finally, the Prolog – After Initialization Hook is called.

If initialization fails for a Connector, then AssemblyLine flow passes to the

Prolog – On Error Hook where you can deal with this error.

10 IBM Tivoli Directory Integrator 6.1: Users Guide

The Reconnect feature allows you to configure a Connector to automatically

attempt to re-establish its connection if an error occurs during setup or data

access. These settings are found under the Connector's Connection Failure

tab.

Note: Script Connectors (Connectors implemented using JavaScript) are

evaluated at this stage so that required Connector functions are

registered and initialization code is executed.

AL Prolog Hooks (After Initialization)

The AssemblyLine Prolog - After Initialization Hook is executed. Completion

of this Hook signals the end of Start-up Phase, and the beginning of Data

flow Phase.

Data flow Phase

AssemblyLine Start of Cycle Hook

This Hooks is invoked at the start of every cycle before Feeds or Flow

components.

AssemblyLine Cycle

Control is passed to the first component in the flow, typically a Server or

Iterator mode Connector in the Feeds section.

 If you have one or more Iterators in the AssemblyLine, then the first one

starts the cycle by retrieving the next Entry from its result set and mapping

Attributes into the Work Entry. The resulting Work Entry is passed to Flow

section components, starting at the top of the list as seen in the CE.

 For Server mode Connectors, a 'listener' process is launched that waits for

incoming client connections. When a connection request is detected, the

Connector accepts the connection and then switches itself to Iterator mode in

order to feed data from the client into the Flow section for processing. Either

way, you get an Iterator driving Work Entries to the Flow components.

End-Of-Cycle

When the last Flow component is executed, one of three things can happen: If

the current Work Entry came from an Iterator, control is passed back to the

Iterator to get the next Entry from its source; In the case of a Server mode

Connector, a reply is made to the client and the Flow components are

returned to the AL Pool Manager; For an AL that has been called in

Manual/Cycle mode, the thread is passed back to the caller so that results can

be accessed. There is no specific Hook at this point, although this can be

added to your AssemblyLine by dropping a Script at the end.

End of Data

End of Data is an Iterator mode Hook that is called when the end of the input

data set is reached. At this point, control is either passed to the next Feeds

Connector, or the AssemblyLine goes into Shutdown Phase.

Chapter 2. IBM Tivoli Directory Integrator concepts 11

Shutdown Phase

At this point, AL processing has either completed normally, or aborted due to an

error.

AssemblyLine Epilog - Before Close Hook

The AssemblyLine Hook called Epilog – Before Close is processed.

Connectors/Function Close flow

Each Connectors' and Functions' Epilog Hooks are now called, in the order

they appear in the Config Editor:

1. The Before Close Hook.

2. The close operation is carried out (for example, closing a connection or

release an API callback).

3. The After Close Hook.

AssemblyLine Epilog - After Close Hook

Finally, the AssemblyLine Epilog – After Close Hook is run.

A word on Server mode Connector Setup

When a Connector in Server mode fires up, it goes into event listening mode and

passes control to the next component in the Feeds list. This allows you to have

multiple Server mode Connectors active and feeding data into the flow at the same

time — one example would be to have several HTTP Server Connectors in Server

mode listening to different ports, but feeding the same AL. Although Server mode

Connectors are part of an AssemblyLine configuration, they run as separate processes

(threads). In addition, if the Connector is connection based (like HTML and LDAP)

then new instances are spawned for each connection.

 There is an additional set of Hooks that is evaluated for Connectors in this mode. The

hooks specific to Server mode functionality for dealing with incoming

notifications/connections are:

 Before Accepting connection

This Hook is called before the Connector goes into listening mode.

After Accepting connection

Once a connection is received, this Hook is invoked. Note that the no data is

available at this time. In order to examine incoming event information, use the

Iterator Hooks like After GetNext or GetNext Successful.

Error on Accepting connection

This Hook is executed if an error occurs in any of the Server mode Hooks, or

received from the data source during event listening.
v As mentioned previously, if you have more than one Connector in Iterator mode (see

“Connector modes” on page 21), these Connectors are stacked in the order in which they

are displayed in the configuration (top to bottom). For example, if you have two Iterators, a

and b, then a is called until it returns no more entries before the AssemblyLine switches to

b.

12 IBM Tivoli Directory Integrator 6.1: Users Guide

v If you have no Connectors in Iterator mode, and no Initial Work Entry (IWE) is provided

to the AssemblyLine when it is started, for example, by a calling an EventHandler, and if

no work Entry is created in an AssemblyLine or Connector Prolog Hook, then the

AssemblyLine still performs a single pass.

Finally, there is a Shutdown Request Hook where you can put code that is processed if the

AssemblyLine is closed down properly due to a external request to shut down (that is, the

AssemblyLine does not crash), enabling you to make it perform a graceful shutdown.

Special functions are available from the system object to skip or retry the current work entry,

as well as to skip over a Connector, and so forth. See “Controlling the flow of an

AssemblyLine” on page 49 for more details.

Exiting a Branch (or Loop or the AL Flow)

If you want to exit a Branch, Loop, or Switch, or even "built-in" Branches like the AL Flow

section, you use the system.exitBranch() method from a place where you can script, e.g. a

Hook, or even a Script Component.

Calling system.exitBranch() with no parameters (or with an empty string) will cause the

containing Branch to exit, and flow continues with the first component after the Branch.

You can also provide the method with a string parameter containing either:

One of the reserved keywords: ″Branch″, ″Loop″, ″Flow″, ″Cycle″ or ″AssemblyLine″ (case

insensitive)

This will break the first Branch of this type, tracing backwards up the AssemblyLine.

So if your script code is in a Branch within a Loop, and you execute the call

system.exitBranch("Loop"), you will exit both the Branch and the Loop containing it.

Using the reserved word ″Flow″ causes the flow to exit the Flow section of the

AssemblyLine, continuing either to the Response behavior in the case of a Server

Mode Connector; or to an active Iterator to read in the next Entry; or to AL shutdown

(Epilogs, ...). The ″Cycle″ keyword passes control to the end of the current AL cycle,

and does not invoke Response behavior in Server Mode Connectors, while the

"AssemblyLine" keyword will cause the AL to stop and shutdown.

 All other values used in the exitBranch() call causes a break out of the branch/loop

having the specified name. So, for example, the call exitBranch(“IF_LookupOk”) sends

the flow after the containing Branch or Loop called “IF_LookupOk”. Note that unlike

system.skipTo(), which will pass control to any named AL component, exitBranch()

will cause processing to continue after the specified Loop/Branch.

The name of a Branch or Loop (case sensitive)

If you pass the name of a Branch or Loop in which your script call is nested, then

control will pass to the component following it in the AL. If no Branch or Loop with

this name is found (tracing backwards from the point of the call) then an error results.

Chapter 2. IBM Tivoli Directory Integrator concepts 13

Starting an AssemblyLine in the Config Editor – ibmditk

When you launch an AssemblyLine, it typically has a Feeds Connector operating in Iterator or

Server mode, or you are passing in an Initial Work Entry (IWE) when the AL is started. If you

don’t have an Iterator, no Connector in Server mode and no IWE is provided, then the

AssemblyLine has no data feed and will not have a Work Entry to process. This does not

prevent you from having other components that read, write or manipulate data, but they

cannot be dependent on a Work Entry being passed in from outside the Flow section.

You start an AL by selecting it and pressing the Run button or the Alt-R keyboard shortcut.

This causes the Config Editor to launch a separate instance of the TDI Server and connect to it

using the API. The Config Editor then pipes over the Config and instructs the Server to run

the selected AssemblyLine. In addition, the Server is told to send log output to the console, so

that the Config Editor can capture this and display it in an Execute screen.

You can also run and test your AssemblyLines using the Debugger. This powerful tool is

available via the Run in debug mode button or with the Alt-D keyboard shortcut.

Starting an AssemblyLine from another AL or script

Refer to “AssemblyLine parameter passing” for more information.

Accessing AL components inside the AssemblyLine

Each AL component is available as a pre-registered script variable with the name you chose

for the component.

Note that you can dynamically load components with scripted calls to functions like

system.getConnector(), although this is not for inexperienced users.1

AssemblyLine parameter passing

There are three ways for data to get into an AssemblyLine:

v Generating your own initial entry inside the AssemblyLine (for example, in the a Prolog

script).

v Fed from one or more Iterators.

v Starting the AssemblyLine with parameters from another AssemblyLine using the AL

Connector or AL Function Component, or via an API call.

If you want to start an AssemblyLine with parameters from another AssemblyLine or

EventHandler, then you have a couple of options:

v Use the Task Call Block (TCB), which is the preferred method. The TCB is detailed below.

v Provide an Initial Work Entry directly.

1. The Connector object you get from this call is a Connector Interface object, and is the data source specific part of

an AssemblyLine Connector. When you change the type of any Connector, you are actually swapping out its data

source intelligence (the Connector Interface) which provides the functionality for accessing data on a specific

system, service or datastore. Most of the functionality of an AssemblyLine Connector, including the Attribute Maps,

Link Criteria and Hooks, is provided by the IBM Tivoli Directory Integrator kernel and is kept intact when you

switch Connector types.

14 IBM Tivoli Directory Integrator 6.1: Users Guide

Note: This is provided for backwards compatibility.

Task Call Block (TCB)

Basic Use: The Task Call Block (TCB) is special kind of Entry object (like the Work Entry)

used by a caller to set a number of parameters for an AssemblyLine. The TCB can provide the

user with a list of input or output parameters specified by an AssemblyLine (including

operation codes defined in the AssemblyLine’s Operations tab), as well as enabling the caller

to set parameters for the AssemblyLine’s Connectors. The TCB consists of the following

logical sections:

v The Initial Work Entry passed to the AssemblyLine: tcb.setInitalWorkEntry()

v The Connector parameters: tcb.setConnectorParameter()

v The input/output mapping rules for the AssemblyLine (set in the Config Editor under the

Operations tab)

v An optional user-provided accumulator object that receives all work entries from the

AssemblyLine: tcb.setAccumulator()

For example, starting an AssemblyLine with an Initial Work Entry and setting the filePath

parameter of a Connector called MyInput to "d:\myinput.txt" is accomplished with the

following code:

var tcb = system.newTCB(); // Create a new TCB

var myIWE = system.newEntry(); // Create a new Entry object

myIWE.setAttribute("name","John Doe"); // Add an attribute to myIWE

tcb.setInitialWorkEntry (myIWE) // Set the IWE and parameter

 // (below);

// Note that since this is a JavaScript string, we must "escape" the forward slash

// or use a backslash (Windows syntax)

tcb.setConnectorParameter ("MyInput", "filePath", "d:\myinput.txt");

var al = main.startAL ("MyAssemblyLine", tcb) // Start the AL with the tcb;

al.join(); // Wait for AL to finish

Using an accumulator: As noted previously, you can also pass in an accumulator object to an

AssemblyLine with the TCB. An accumulator can be any one of the following:

java.util.Collection

All work entries are cloned and added to the collection (for example, ArrayList,

Vector, and so forth).

com.ibm.di.server.ConnectorInterface (Connector Interface)

The putEntry() method for this Connector Interface is called with the work Entry at

the end of each AssemblyLine cycle.

com.ibm.di.server.ParserInterface (Parser)

The writeEntry() method is called for this Parser with the work Entry at the end of

each AssemblyLine cycle.

Chapter 2. IBM Tivoli Directory Integrator concepts 15

com.ibm.di.server.AssemblyLineComponent (AssemblyLine Connector)

The add() method is called for this AssemblyLine Connector with the work Entry at

the end of each AssemblyLine cycle.

If the accumulator is not one of these classes or interfaces, an exception is thrown.

For example, to accumulate all work entries of an AssemblyLine into an XML file you can do

the following:

var parser = system.getParser ("example_name.XML"); // Get a Parser

// Set it up to write to file

parser.setOutputStream (new java.io.FileOutputStream ("d:/accum.xml"));

parser.initParser(); // Initialize it.

tcb.setAccumulator (parser); // Set Parser to tcb

var al = main.startAL ("MyAssemblyLine", tcb); // Start AL with tcb

al.join(); // Wait for AL to finish

parser.closeParser(); // Close the parser - this flushes and

 // closes the output file

Of course, you can configure a Connector instead of programming the Parser manually as in

the following:

var connector = system.getConnector("myFileSysConnWithXMLParser");

tcb.setAccumulator (connector);

var al = main.startAL("MyAssemblyLine", tcb);

al.join();

connector.terminate();

The TCB is typically initialized by the user and then used by the AssemblyLine. If the

AssemblyLine has a Operations specification, the TCB remaps input attributes to the Initial

Work Entry as expected by the AssemblyLine, and likewise for setting the result object. This is

done so that the external call interface to an AssemblyLine can remain the same even though

the internal work entry names change in the AssemblyLine. Once the TCB is passed to an

AssemblyLine, you must not expect anything more from the TCB. Use the AssemblyLine’s

getResult() and getStats() to retrieve the result object and statistics.

The TCB result mapping is performed before the Epilog so you can still access the final result

before the AssemblyLine caller gets to it.

Disabling AssemblyLine components: It is possible to programmatically specify that certain

AssemblyLine components must not be created or initialized on AssemblyLine initialization.

This is done by disabling those components.

AssemblyLine components are enabled by default.

16 IBM Tivoli Directory Integrator 6.1: Users Guide

In order to enable/disable a component in the AssemblyLine, you must call the

com.ibm.di.server. TaskCallBlock.setComponentEnabled(String name, boolean enabled)

method on the TaskCallBlock (TCB) object of the AssemblyLine. The name argument of the

method specifies the name of the component to be enabled/disabled. The enabled argument

of the method specifies whether the component is to be enabled or disabled.

The actual enabling/disabling of the AssemblyLine components happens in the

com.ibm.di.server. TaskCallBlock.applyALSettings(AssemblyLineConfig alc) method. This

method is invoked on AssemblyLine initialization. As the initialization of the AssemblyLine

progresses, the components which have been marked as disabled do not get

created/initialized.

If a LOOP component is disabled then all components contained in that LOOP will also be

disabled.

Even if a component is disabled from the Config Editor GUI, it can be enabled using this

feature:

com.ibm.di.server.TaskCallBlock.setComponentEnabled(String name, boolean enabled)

Providing an Initial Work Entry (IWE)

This is an alternative way of passing parameters via a TCB and is supported for backward

compatibility reasons.

When an AssemblyLine is started with the system.startAL() call by an EventHandler or from

a script, the AssemblyLine can still be passed parameters by setting attribute or property

values in the Initial Work Entry (which is accessed through the work variable). It is then the

job of the user to apply these values to set Connector parameters (for example, in the

AssemblyLine Prolog – Init Hook using the connectorName.setParam() function.

Note: The user must clear the work Entry with the task.setWork(null) call, otherwise

Iterators in the AssemblyLine pass through on the first cycle.

You can examine the result of the AssemblyLine (which is the work Entry when the

AssemblyLine stops) by using the getResult() function. See also ″(runtime provided)

Connector″ in IBM Tivoli Directory Integrator 6.1: Reference Guide.

Below is an example of passing in a Connector parameter value with an IWE:

var entry = system.newEntry();

entry.setAttribute ("userNameForLookup", "John Doe");

// Here we start the AssemblyLine

var al = main.startAL ("EmailLookupAL", entry);

// wait for al to finish

al.join();

var result = al.getResult();

Chapter 2. IBM Tivoli Directory Integrator concepts 17

// assume al sets the mail attribute in its working entry

task.logmsg ("Returned email = " + result.getString("mail"));

Sandbox

IBM Tivoli Directory Integrator includes a Sandbox feature which enables the user to record

the operation of one or more Connectors in an AssemblyLine for later replay without the

necessary data sources being available. This feature utilizes the System Store facility. See

“System Store” on page 82 for more information about System Store.

Before you can record or replay an AssemblyLine, you must first tell IBM Tivoli Directory

Integrator where to store the AssemblyLine recording data. This is done in the Sandbox tab of

the AssemblyLine Details window. At the top of this screen is a field labeled Database where

you can enter the directory path for the system to use.

The Sandbox facility is not supported in AssemblyLines using Checkpoint/Restart, containing

a Connector in Server mode, or an Iterator Connector with Delta enabled. The server will

abort the running of the AssemblyLine when/if this is discovered.

Recording AssemblyLine input

Once you have configured the User Store Database path to use, you must then select the

Connectors to be recorded. This is also done in the AssemblyLine Sandbox tab. This tab

presents you with the list of AssemblyLine Connectors, each line offering you Record Enabled

and Playback Enabled checkboxes. In order to record the operation of a Connector, simply

select Record Enabled for that Connector.

In order to start AssemblyLine Recording, select Record from the drop-down list next to the

Run button at the top of the AssemblyLine Details window. When you now run the

AssemblyLine, all data access operations are recorded for selected Connectors.

In order to run an AssemblyLine in Record mode from the command line, start the server

with the -qr switch.

When in Record Mode, the AssemblyLine saves all content that it receives from the Connector

Interfaces (both attributes and properties), as well as the TCB if this has been passed to the

AssemblyLine. Only input Connectors (Connectors in Iterator, Lookup or Call/Reply mode)

actually have their data recorded. Connectors doing output (Update, Add, Delta or Delete

mode) have their data ignored during recording, although error messages thrown by the

Connector Interface are logged and replayed later during playback.

Sandbox Playback of AssemblyLine Recordings

When an AssemblyLine is in Sandbox mode, all the Connectors set for playback are said to be

in virtual mode. This means that their Connector Interface operations (for example, getNext(),

findEntry(), and so forth) are not actually called. Instead, these operations are simulated

during playback.

18 IBM Tivoli Directory Integrator 6.1: Users Guide

In order to run an AssemblyLine in Playback Mode, you must select the Connectors to be run

in virtual mode by the corresponding Playback Enabled checkbox in the AssemblyLine

Sandbox tab.

Note: Not all recorded Connectors need to enabled for playback (you can enable them to

access live data sources), although this might affect the results of the playback

operation.

To run an AssemblyLine from the command line, start the server with the -q2 switch. A

sandboxed AssemblyLine runs with input (including its Initial Work Entry) coming from a

recorded set of data. For example, if you have a JMS Connector in your sandboxed

AssemblyLine, the JMS Connector retrieves input from the previously recorded data and is

never actually initialized.

When recording an AssemblyLine, the server creates a CloudScape database in the specified

Database directory using the AssemblyLine name as the database name. This database

contains tables for each Connector in the AssemblyLine. A sandboxed AssemblyLine can have

one or more of its virtual Connectors replaced by renaming the recorded Connector and then

adding a new one with its original name.

Connectors

Connectors are used to access and update information sources. A Connector's job is to level

the playing field so that you do not have to deal with the technical details of working with

various data stores, systems, services or transports. As such, each type of Connector is

designed to use a specific protocol or API, handling the details of data source access so that

you can concentrate on the data manipulations and relationships, as well as custom

processing like filtering and consistency control.

There are basically two categories of Connectors:

v The first category is where both the transport and the structure of data content is known to

the Connector (that is, the schema of the data source can be queried or detected using a

well known API such as JDBC or LDAP).

v The second category is where the transport mechanism is known, but not the content

structuring. This category requires a Parser (see “Parsers” on page 44 or ″Parsers″ in IBM

Tivoli Directory Integrator 6.1: Reference Guide) to interpret or generate the content structure

in order for the AssemblyLine to function properly.

When you select a Connector for your AssemblyLine, a dialogue box is displayed enabling

you to choose the type of Connector you want to inherit from. Inheritance is an important

concept when working with IBM Tivoli Directory Integrator because all the components you

include in solutions inherit some or all of their characteristics from another component; either

one of the basic types, or from your library of pre-configured components (the Connectors,

Parsers, EventHandlers and Function Component folders in the Config Browser).

Chapter 2. IBM Tivoli Directory Integrator concepts 19

The following describes Connector prefixes (as seen in the Config Editor) and their meanings:

system:/Connectors/ibmdi

These Connectors are the standard out-of-the-box Connectors included with IBM

Tivoli Directory Integrator 6.1.

/Connectors/

These are Connectors that you have pre-configured in the "Connectors" library folder

of the current Config.

myInclude:/Connectors/

These are Connectors that you can include from another configuration file (see

“Include/Namespaces” on page 109).

@myConnector

This is a very special case where, instead of inheriting a Connector, you are reusing the

connection of another Connector in the same AssemblyLine. The name myConnector

used as an example is replaced by the name of the Connector you wish to reuse.

The list of all Connectors included with the IBM Tivoli Directory Integrator can be found in

the IBM Tivoli Directory Integrator 6.1: Reference Guide. But you can also write your own

Connector in JavaScript™ (see ″Script Connector,″ IBM Tivoli Directory Integrator 6.1: Reference

Guide) or even Java (see ″Implementing your own Components″, IBM Tivoli Directory Integrator

6.1: Reference Guide.)

The mode setting of a Connector determines what 'role' this component will play in the AL.

Each Connector supports only a subset of modes that are suited for its connected system. For

example, the File System Connector supports only a single output mode, AddOnly, and not

Update, Delete or CallReply. When you use a Connector you must first consult the

documentation for this component for a list of supported modes (see ″Connector Interfaces″ in

IBM Tivoli Directory Integrator 6.1: Reference Guide).

Connectors in Iterator or Server mode can be used in the Feeds section of the AssemblyLine

(the component list in the AL DataFlow tab). Connectors in other modes show up in the Flow

section (although Iterators can also participate as Flow section components).

Connector Schema

Connectors can read and write data. The Connector Schema describes the Connector 'expects

to find' when reading and writing the data. If an input field is required, the AssemblyLine

fails if it does not show up in the Connector Interface.

The schema can be seen in the Input Map or Output Map tab (depending on the Connector’s

Mode) of the Connector and certain behavior can be customized there, although this is

dependent on the data source itself. From either Attribute Map tab (Input or Output) you can

discover the schema of the connected data source by pressing the "Quick discovery" button (at

the top of the Attribute Map itself) or by clicking the Connect and Read Next buttons found

above the Connector Schema. For those systems that support it, there is a "Query schema"

20 IBM Tivoli Directory Integrator 6.1: Users Guide

button as well. Even though you cannot discover Attributes, you can define the list of

expected Attributes yourself. See “Setting up the Attribute Map” on page 177.

How do Connectors share data (the work Entry)?

Data is passed between Connectors using a storage object called the work Entry. This storage

object can be accessed from your scripts by using the work variable, and you can remove

attributes, add new ones and change attribute values. For an AssemblyLine to operate, the

work Entry must be populated from some source. This is often done with a Connector set to

Iterator mode. In this case, the Iterator drives data to the AssemblyLine. You can also pass an

Initial Work Entry (IWE) to an AssemblyLine when it is started, and you can even create your

own work Entry in a Prolog script, for example:

init_work = system.newEntry(); // Create a new Entry object

init_work.setAttribute("uid", "cchateauvieux"); // populate it

task.setWork(init_work); // make it known as work to the Connectors

Note: An IWE in the Prolog can be regarded as fed from an invisible one-pass Iterator. See

“Multiple Iterators in an AssemblyLine” on page 22 for the side effect this has on the

behavior of any Iterators in the AssemblyLine.

The work Entry can be populated by a Connector in Lookup mode as well, although Link

Criteria must be set up so that it is not dependent on attributes in the work Entry if none is

available.

Another source of work Entries is a Connector in Server mode.

Connector modes

The mode of an AssemblyLine Connector defines what role that Connector plays in the data

flow, and controls how the automated behavior of the AssemblyLine drives the Component

for you. Connectors can be set to one of eight standard modes:

v Iterator

v Lookup

v AddOnly

v Update

v Delete

v CallReply

v Server

v Delta

These modes are discussed in the sections below. For a detailed description of Connector

mode behavior, as well as that of the AssemblyLine in general, see ″AssemblyLine and

Connector mode flowcharts″ in IBM Tivoli Directory Integrator 6.1: Reference Guide.

Chapter 2. IBM Tivoli Directory Integrator concepts 21

Iterator mode

Connectors in Iterator mode are used to scan a data source and extract its data. The Iterator

Connector actually iterates through the data source entries, reads their attribute values, and

delivers each Entry to the AssemblyLine Flow section components. A Connector in Iterator

mode is referred to as an 'Iterator'.

AssemblyLines (except those called with an IWE; see “AssemblyLine parameter passing” on

page 14) typically contain at least one Connector in Iterator mode. Iterators (Connectors in

Iterator mode) supply the AssemblyLine with data by building Work Entries and passing

these to the AL Flow section.

Flow section components are powered in order, starting at the top of the Flow list. When

Flow processing completes, control is passed back to the Iterator in order to retrieve the next

Entry.

Multiple Iterators in an AssemblyLine: If you have more than one Connector in Iterator

mode, these Connectors are stacked in the order in which they appear in the Config (and the

Connector List in the Config Editor, in the Feeds section) and are processed one at a time. So,

if you are using two Iterators, the first one reads from its data source, passing the resulting

work Entry to the first non-Iterator, until it reaches the end of its data set. When the first

Iterator has exhausted its input source, the second Iterator starts reading in data.

An initial work Entry is treated as coming from an invisible Iterator processed before any

other Iterators. This means an IWE is passed to the first non-Iterator in the AssemblyLine,

skipping all Iterators during the first cycle. This behavior is visible on the AssemblyLine Flow

page in ″AssemblyLine and Connector mode flowcharts″ in IBM Tivoli Directory Integrator 6.1:

Reference Guide.

Assume you have an AssemblyLine with two Iterators, a preceding b. The first Iterator, a, is

used until a returns no more entries. Then the AssemblyLine switches to b (ignoring a). If an

Initial Work Entry (IWE) is passed to this AssemblyLine, then both Iterators are ignored for

the first cycle, after which the AssemblyLine starts calling a.

Sometimes the IWE is used to pass configuration parameters into an AssemblyLine, but not

data. However, the presence of an IWE causes Iterators in the AssemblyLine to be skipped

during the first cycle. If you do not want this to happen, you must empty out the work Entry

object by calling the task.setWork(null) function in a Prolog script. This causes the first

Iterator to operate normally.

Using the Iterator mode: The most common pattern for using a Connector in Iterator mode

is:

1. Add a Connector in Iterator mode to your AssemblyLine:

a. Right-click the Connectors folder in the Config Browser, or select Object->New

Connector

b. Name your new Connector.

22 IBM Tivoli Directory Integrator 6.1: Users Guide

c. Select your Connector type.

d. Set the mode of your new Connector to Iterator.
2. Click the Config ... tab for your Connector in the IBM Tivoli Directory Integrator Config

Editor and set the connection parameters for this Connector in the Connection sub-tab.

Some Connectors require you to configure a Parser as well in the Parser sub-tab.

3. Click the Input Map tab of the Connector configuration window to discover or define the

schema for this data source:

a. Click the Connect to the data source button to fire up the Connector.

b. Click the Read next entry button to get the next entry from the data source and

examine it to discover attributes.

c. Use the Discover the schema of the datasource button, if this is supported by the

underlying data source.

d. You can add additional attributes, or remove existing ones, using the Add and Remove

buttons.
4. Finally, select Attributes from the Connector Attributes list and then drag them into your

Input Map, or add these by hand with the Add and Remove buttons. The Input Map

controls which Attributes are brought into your AL for processing, as well as any

transformations you specify.

These mapped Attributes are retrieved from the data source and are passed to the Connectors

in the Flow section in your AssemblyLine.

Lookup mode

Lookup mode enables you to join data from different data sources using the relationship

between attributes in these systems. A Connector in Lookup mode is often referred to as a

Lookup Connector.

In order to set up a Lookup Connector you must tell the Connector how you define a match

between data already in the AssemblyLine and that found in the connected system. This is

called the Connector’s Link Criteria, and each Lookup Connector has an associated Link

Criteria tab where you define the rules for finding matching entries.

Using the Lookup mode: The most common pattern for using a Connector in Lookup mode

is:

1. Add a Connector in Lookup mode to your AssemblyLine:

a. Right-click the Connectors folder in the Config Browser, or select Object->New

Connector

b. Name your new Connector.

c. Select your Connector type.

d. Set the mode of your new Connector to Lookup.
2. Click the Config ... tab for your Connector in the IBM Tivoli Directory Integrator Config

Editor and set the connection parameters for this Connector in the Connection sub-tab.

Some Connectors require you to configure a Parser as well in the Parser sub-tab.

Chapter 2. IBM Tivoli Directory Integrator concepts 23

3. Click the Input Map tab of the Connector configuration window to discover or define the

schema for this data source:

a. Click the Connect to the data source button to fire up the Connector.

b. Click the Read next entry button to get the next entry from the data source and

examine it to discover attributes.

c. Use the Discover the schema of the datasource button, if this is supported by the

underlying data source.

d. You can add additional attributes, or remove existing ones, using the Add and Remove

buttons.
4. Select Attributes from the Connector Attributes list and then drag them into your Input

Map, or add these by hand with the Add and Remove buttons. The Input Map control

which Attributes are brought into your AL for processing, as well as any transformations

you specify.

5. Click the Link Criteria tab of the Connector configuration window and set up the rules

for attribute matching. Here you have a couple of choices:

a. Click Add new Link Criteria and select an attribute from the connected system, the

matching operator (for example, Equals, Begins With, and so forth) and then the work

Entry attribute to be matched. When the Connector performs the Lookup, it creates the

underlying API/protocol syntax based on the Link Criteria you have specified, keeping

your solution independent of the type of system used. You can add multiple Link

Criteria, which are connected by the boolean operator AND, together to build the

search call.

b. You can also click the Build criteria with custom script button, which opens a script

editor window where you can create your own search string, passing this back to the

Connector using the ret.filter object. For example:

ret.filter = "uid=" + work.getString("uid");

Note that Expressions can also be used to dynamically specify the Attribute or Value to

use for any Link Criteria. See “Expressions” on page 111 for information. Also see “Link

Criteria” on page 46 for more details about Link Criteria.

The attributes that you read (and compute) in the Input Map are available to other

downstream Connectors and script logic using the work Entry object.

AddOnly mode

Connectors in AddOnly mode (AddOnly Connectors) are used for adding new data entries to

a data source. This Connector mode requires almost no configuration. Set the connection

parameters and then select the attributes to write from the work Entry.

Using the AddOnly mode: The most common and simple pattern for using a Connector in

AddOnly mode is:

1. Add a Connector in AddOnly mode to your AssemblyLine:

a. Right-click the Connectors folder in the Config Browser, or select Object->New

Connector

24 IBM Tivoli Directory Integrator 6.1: Users Guide

b. Name your new Connector.

c. Select your Connector type.

d. Set the mode of your new Connector to AddOnly.
2. Click the Config ... tab for your Connector in the IBM Tivoli Directory Integrator Config

Editor and set the connection parameters for this Connector in the Connection sub-tab.

Some Connectors require you to configure a Parser as well in the Parser sub-tab.

3. Optionally, and if data is available to read from the connected system, you can click the

Input Map tab of the Connector configuration window to discover and define the schema

for this data source:

a. Click the Connect to the data source button to fire up the Connector.

b. Click the Read next entry button to get the next entry from the data source and

examine it to discover attributes.

c. Use the Discover the schema of the datasource button, if this is supported by the

underlying data source.

d. Add additional attributes, or remove existing ones, using the Add and Remove

buttons.
4. In the Output Map tab you can select attributes from the Work Entry window and then

drag them into your Output Map. You can also add and remove attributes with the Add

and Remove buttons.

Entries with the Attributes you have selected are added in the data source during

AssemblyLine’s execution.

Update mode

Connectors in Update mode (Update Connectors) are used for adding and modifying data in

a data source. For each Entry passed from the AssemblyLine, the Update Connector™ tries to

locate a matching Entry from the data source to modify with the Entry’s attributes values

received. No no match is found, the Update mode Connector will add a new Entry.

As with Lookup Connectors, you must tell the Connector how you define a match between

data already in the AssemblyLine and that found in the connected system. This is called the

Connector’s Link Criteria, and each Update Connector has an associated Link Criteria tab

where you define the rules for finding matching entries. If no such Entry is found, a new

Entry is added to the data source. However, if a matching Entry is found, it is modified. If

more than one entry matches the Link Criteria, the Multiple Entries Found Hook is called.

Furthermore, the Output Map can be configured to specify which attributes are to be used

during an Add or Modify operation.

When doing a Modify operation, only those attributes that are marked as Modify (Mod) in

the Output Map are changed in the data source. If the Entry passed from the AssemblyLine

does not have a value for one attribute, the Null Behavior for that attribute becomes

significant. If it is set to Delete, the attribute does not exist in the modifying entry, thus the

Chapter 2. IBM Tivoli Directory Integrator concepts 25

attribute cannot be changed in the data source. If it is set to NULL, the attribute exists in the

modifying entry, but with a null value, which means that the attribute is deleted in the data

source.

An important feature that Update Connectors offer is the Compute Changes option. When

turned on, the Connector first checks the new values against the old ones and updates only if

and where needed. Thus you can skip unnecessary updates which can be valuable if the

update operation is a heavy one for the particular data source you are updating.

Using the Update mode: The most common and simple pattern for using a Connector in

Update mode is:

1. Add a Connector in Update mode to your AssemblyLine:

a. Right-click the Connectors folder in the Config Browser, or select Object->New

Connector

b. Name your new Connector.

c. Select your Connector type.

d. Set the mode of your new Connector to Update.
2. Click the Config ... tab for your Connector in the IBM Tivoli Directory Integrator Config

Editor and set the connection parameters for this Connector in the Connection sub-tab.

Some Connectors require you to configure a Parser as well in the Parser sub-tab.

3. Click the Input Map tab of the Connector configuration window to discover and define

the schema for this data source:

a. Click the Connect to the data source button to fire up the Connector.

b. Click the Read next entry button to get the next entry from the data source and

examine it to discover attributes.

c. Use the Discover the schema of the datasource button, if this is supported by the

underlying data source.

d. You can add additional attributes, or remove existing ones, using the Add and Remove

buttons.

e. Add additional attributes, or remove existing ones, using the Add and Remove

buttons.
4. In the Output Map tab you can select attributes from the Work Entry window and then

drag them into your Output Map. You can also add and remove attributes with the Add

and Remove buttons.

5. Click the Link Criteria tab of the Connector configuration window and set up the rules

for attribute matching. Here you have a couple of choices:

a. Click on the Add new Link Criteria button and select an attribute from the connected

system, the matching operator (for example, Equals, Begins With, and so forth) and

then the work Entry attribute to be matched. When the Connector performs the

Lookup (which is part of the Update behavior), it creates the underlying API/protocol

syntax based on the Link Criteria you have specified, keeping your solution

26 IBM Tivoli Directory Integrator 6.1: Users Guide

independent of the type of system used. You can add multiple Link Criteria, which are

connected by the boolean operator AND, together to build the search call.

b. You can click the Build criteria with custom script button, which opens a script editor

window where you can create your own search string, passing this back to the

Connector using the ret.filter object. For example:

ret.filter = "uid=" + work.getString("uid");

See “Link Criteria” on page 46 for more information about Link Criteria.

Attributes you have selected for the Entries are updated in the data source during

AssemblyLine’s execution.

Note: In Update mode, multiple entries can be updated. See ″AssemblyLine and Connector

mode flowcharts″ in IBM Tivoli Directory Integrator 6.1: Reference Guide.

Delete mode

Connectors in Delete mode (Delete Connectors) are used for deleting data from a data source.

For each Entry passed to the Delete Connector, it tries to locate matching data in the

connected system. If a single matching Entry is found, it is deleted, otherwise the On No

Match Hook is called if none were found, or the On Multiple Entries Hook is more than a

single match was found. As with Lookup and Update modes, Delete mode requires you to

define rules for finding the matching Entry for deletion. This is configured in the Connector’s

Link Criteria tab.

Using the Delete mode: The most common and simple pattern for using a Connector in

Delete mode is:

1. Add a Connector in Delete mode to your AssemblyLine:

a. Right-click the Connectors folder in the Config Browser, or select Object->New

Connector

b. Name your new Connector.

c. Select your Connector type.

d. Set the mode of your new Connector to Delete.
2. Click the Config ... tab for your Connector in the IBM Tivoli Directory Integrator Config

Editor and set the connection parameters for this Connector in the Connection sub-tab.

Some Connectors require you to configure a Parser as well in the Parser sub-tab.

3. Click the Input Map tab of the Connector configuration window to discover and define

the schema for this data source:

a. Click the Connect to the data source button to fire up the Connector.

b. Click the Read next entry button to get the next entry from the data source and

examine it to discover attributes.

c. Use the Discover the schema of the datasource button, if this is supported by the

underlying data source.

d. You can add additional attributes, or remove existing ones, using the Add and Remove

buttons.

Chapter 2. IBM Tivoli Directory Integrator concepts 27

4. In the Input Map tab you can select attributes from the Connector Attribute list and then

drag them into your Input Map. You can also add and remove attributes with the Add

and Remove buttons.

Note: The Input Map is used in Delete mode for reading the matching entry found in the

data source into the conn Entry object, which can then be used in your scripts (for

example, to determine if the entry actually is to be deleted).

5. Click the Link Criteria tab of the Connector configuration window and set up the rules

for attribute matching. Here you have a couple of choices:

a. Click the Add new Link Criteria button and select an attribute from the connected

system, the matching operator (for example, Equals, Begins With, and so forth) and

then the work Entry attribute to be matched. When the Connector performs the

Lookup, it creates the underlying API/protocol syntax based on the Link Criteria you

have specified, keeping your solution independent of the type of system used. You can

add multiple Link Criteria, which are connected by the boolean operator AND,

together to build the search call.

b. You can click the Build criteria with custom script button, which opens a script editor

window where you can create your own search string, passing this back to the

Connector via the ret.filter object. For example:

ret.filter = "uid=" + work.getString("uid");

See “Link Criteria” on page 46 for more information about Link Criteria.

CallReply mode

CallReply mode is used to make requests to data source services (such as Web services) which

require you to send input parameters and receive a reply with return values. Unlike the other

modes, CallReply gives access to both Input and Output AttributeMaps.

Using the CallReply mode: The most common and simple pattern for using a Connector in

CallReply mode is:

1. Add a Connector in CallReply mode to your AssemblyLine:

a. Right-click the Connectors folder in the Config Browser, or select Object->New

Connector

b. Name your new Connector.

c. Select your Connector type.

d. Set the mode of your new Connector to CallReply.
2. Click the Config ... tab for your Connector in the IBM Tivoli Directory Integrator Config

Editor and set the connection parameters for this Connector in the Connection sub-tab.

Some Connectors require you to configure a Parser as well in the Parser sub-tab.

3. In the Output Map tab you can select attributes from the Connector Attribute list and then

drag them into your Output Map. You can also add and remove attributes with the Add

and Remove buttons. These are sent as input parameters to the service call.

28 IBM Tivoli Directory Integrator 6.1: Users Guide

4. In the Input Map tab you can select attributes from the Connector Attribute list and then

drag them into your Input Map. You can also add and remove attributes with the Add

and Remove buttons. These are expected as return parameters from the service call.

Server mode

The Server mode, available in a select number of Connectors is meant to provide functionality

previously handled by those EventHandlers that needed to send back a reply message to the

system originating the event.

Server mode is configured using parameters similar to those found in the corresponding

EventHandler from previous versions. These components behave in a similar fashion to their

EventHandler counterparts, connecting to target systems and either polling or subscribing to

event notification services.

On event detection, the Server mode Connector then either proceeds with the Flow section of

this AL, or if an AL Pool has been configured for this AL then it contacts the Pool Manager

process to request an available AL instance to handle this event.

Once the Server mode Connector has been assigned the AL instance it needs to continue, it

spawns an instance of itself in Iterator mode, tied to the channel/session/connection that will

deliver the event data . This Iterator worker object then operates as any normal Iterator does,

including following the standard Iterator Hook flow, reading the event entries one at a time

and passing them to the other Flow components for processing until there is no more data to

read. At this time, the worker Iterator is cleared away, and if necessary, the Pool Manager is

informed that this AL instance is now available again.

When an AssemblyLine with a Server mode connector uses the ALPool, the ALPool will

execute AL instances from beginning to end. Before the AL instance in the ALPool closes the

Flow connectors, the ALPool retrieves those connectors into a pooled connector set that will

be reused in the next AL instance created by the ALPool (ALPool uses

tcb.setRuntimeConnector method).

There are two system properties that govern the behavior of connector pooling:

com.ibm.di.server.connectorpooltimeout

This property defines the timeout in seconds before a pooled connector set is released.

 Table 1. Value table

< 0 Disable Connector pooling

0 Timeout disabled; pool connectors never timeout

> 0 Number of seconds before pooled connectors timeout

Chapter 2. IBM Tivoli Directory Integrator concepts 29

com.ibm.di.server.connectorpoolexclude

This property defines the Connector types that are excluded from pooling. If a

Connector’s class name appears in this comma separated list it is not included in the

Connector pool set

When a new AssemblyLine (AL) instance is created by the ALPool, it will look for an

available pooled connector set, which, if present, is provided to the new AL Instance as

runtime provided connectors. This ensures proper flow of the AL in general in terms of hook

execution, etc.

Connectors are never shared. They are only assigned to a single AL instance when used.

Using the Server mode: The most common pattern for using a Connector in Server mode is:

1. Add a Connector in Server mode to your AssemblyLine:

a. Right-click the Connectors folder in the Config Browser, or select Object->New

Connector

b. Name your new Connector.

c. Select your Connector type.

d. Set the mode of your new Connector to Server.
2. Click the Config ... tab for your Connector in the IBM Tivoli Directory Integrator Config

Editor and set the connection parameters for this Connector in the Connection sub-tab.

Some Connectors require you to configure a Parser as well in the Parser sub-tab.

3. Click the Input Map tab of the Connector configuration window to discover and define

the schema for this data source:

a. Click the Connect to the data source button to fire up the Connector.

b. Click the Read next entry button to get the next entry from the data source and

examine it to discover attributes.

c. Use the Discover the schema of the datasource button, if this is supported by the

underlying data source.

d. You can add additional attributes, or remove existing ones, using the Add and Remove

buttons.

Note: Due to the nature of Connectors in Server mode, using the Connect to the data

source button will in most cases not work; therefore, you will in most cases need to

use an alternative method (using the Discover the schema of the datasource

button, or even setting up Attribute Maps completely by hand with the Add and

Remove buttons).

These mapped Attributes are retrieved from the data source and are passed to the Connectors

in the Flow section in your AssemblyLine.

Server mode Connectors are special in that they usually need to return some information the

client that connects to it.

30 IBM Tivoli Directory Integrator 6.1: Users Guide

In the Output Map tab you can select attributes from the Work Entry window and then drag

them into your Connector Attributes list; after which you assign those Attributes to Attributes

in the Output Schema. You can also add and remove attributes with the Add and Remove

buttons.

Delta mode

The Delta mode is designed to simplify the application of changes to data by providing

perform incremental modifications to the connected system, based on delta operation codes

set by either the Iterator Delta Engine feature (Delta tab for Iterators), or Change Detection

Connectors like the IDS/LDAP/AD/Exchange Changelog Connectors, or the ones for RDBMS

and Lotus/Domino Changes; or by parsing this delta information with the LDIF or DSML

Parsers.

Delta mode is only available for LDAP and JDBC Connectors.

Note: A Connector in Delta mode needs to be paired with another Connector which provides

Delta information, otherwise the Delta mode has no delta operation codes to work

with.

The Delta features in TDI are designed to facilitate synchronization solutions. You can look at

the system’s Delta capabilities as divided into two sections: Detection and Application.

Delta Detection: IBM Tivoli Directory Integrator provides a number of change (delta)

detection mechanisms and tools:

Delta Engine

This is a feature available to Connectors in Iterator mode. If enabled from the

Iterator’s Delta tab, the Delta Engine feature uses the System Store to take a

″snapshot″ of data being iterated. Then on successive runs, each Entry iterated is

compared with the snapshot database to see what has changed.

Change Detection Connector

These components leverage information in the connected system to detect changes,

and are either used in Iterator or Server mode, depending on the Connector. For

example, Iterator mode is used for many of the Change Detection Connectors, like

those for LDAP, Exchange and ActiveDirectory Changelog, as well as the RDBMS and

Domino/Notes Change Connectors.

The System Store based Delta Store feature reports specific changes all the way down to the

individual values of attributes. This fine degree of change detection is also available when

parsing LDIF files. Others components are limited to simply reporting if an entire Entry has

been added, modified or deleted.

This delta information is stored in the work Entry object, and depending on the Change

Detection component/feature used may be stored as an Entry-Level operation code, at the

Attribute-Level or even at the Attribute Value-Level.

Chapter 2. IBM Tivoli Directory Integrator concepts 31

As an example, set up a FileSystem Connector with the Delta Store feature enabled. Have it

iterate over a simple XML document that you can easily modify in a text editor. For example:

<?xml version="1.0" encoding="UTF-8"?>

<DocRoot>

 <Entry>

 <Telephone>

 <ValueTag>111-1111</ValueTag>

 <ValueTag>222-2222</ValueTag>

 <ValueTag>333-3333</ValueTag>

 </Telephone>

 <Birthdate>1958-12-24</Birthdate>

 <Title>Full-Time TDI Specialist</Title>

 <uid>jdoe</uid>

 <FullName>John Doe</FullName>

 </Entry>

</DocRoot>

Be sure to use the special map-all Attribute Map character, the asterisk (*). This is the only

Attribute you need in your map to ensure that all Attributes returned are mapped in to the

work Entry object.

Now add a Script Component with the following code:

// Get the names of all Attributes in work as a String array

var attName = work.getAttributeNames();

// Print the Entry-level delta op code

task.logmsg(" Entry (" +

 work.getString("FullName") + ") : " +

 work.getOperation());

// Loop through all the Attributes in work

for (i = 0; i < attName.length; i++) {

 // Grab an Attribute and print the Attribute-level op code

 att = work.getAttribute(attName[i]);

 task.logmsg(" Att (" + attName[i] + ") : " + att.getOperation());

 // Now loop through all the Attribute’s values and print their op codes

 for (j = 0; j < att.size(); j++) {

 task.logmsg(" Val (" +

 att.getValue(j) + ") : " +

 att.getValueOperation(j));

 }

}

The first time you run this AL, your Script Component code will create this log output:

12:46:31 Entry (John Doe) : add

12:46:31 Att (Telephone) : replace

12:46:31 Val (111-1111) :

12:46:31 Val (222-2222) :

12:46:31 Val (333-3333) :

12:46:31 Att (Birthdate) : replace

12:46:31 Val (1958-12-24) :

12:46:31 Att (Title) : replace

12:46:31 Val (Full-Time TDI Specialist) :

32 IBM Tivoli Directory Integrator 6.1: Users Guide

12:46:31 Att (uid) : replace

12:46:31 Val (jdoe) :

12:46:31 Att (FullName) : replace

12:46:31 Val (John Doe) :

Since this Entry was not found in the previously empty Delta Store, it is tagged at the

Entry-level as new. Futhermore, each of its Attributes has a replace code, meaning that all

values have changed (which makes sense since the Delta is telling us that this is new data). If

you now make the following changes to your XML file: change the last Telephone number

value to 333-3334, delete Birthdate and add a new Address Attribute. Your Config should now

look like this:

<?xml version="1.0" encoding="UTF-8"?>

<DocRoot>

 <Entry>

 <Telephone>

 <ValueTag>111-1111</ValueTag>

 <ValueTag>222-2222</ValueTag>

 <ValueTag>333-3334</ValueTag>

 </Telephone>

 <Title>Full-Time TDI Specialist</Title>

 <uid>jdoe</uid>

 <FullName>John Doe</FullName>

 <Address>123 Willowby Lane</Address>

 </Entry>

</DocRoot>

Run your AL again. This time your log output should look like this:

13:53:22 Entry (John Doe) : modify

13:53:22 Att (Telephone) : modify

13:53:22 Val (111-1111) : unchanged

13:53:22 Val (222-2222) : unchanged

13:53:22 Val (333-3334) : add

13:53:22 Val (333-3333) : delete

13:53:22 Att (Birthdate) : delete

13:53:22 Val (1958-12-24) : delete

13:53:22 Att (uid) : unchanged

13:53:22 Val (jdoe) : unchanged

13:53:22 Att (Title) : unchanged

13:53:22 Val (Full-Time TDI Specialist) : unchanged

13:53:22 Att (Address) : add

13:53:22 Val (123 Willowby Lane) : add

13:53:22 Att (FullName) : unchanged

13:53:22 Val (John Doe) : unchanged

Now the Entry is tagged as modify and the Attributes reflect what has been done to each of

them. As you can see, the Birthdate Attribute is marked as delete and Address as add. That’s

the reason you used the special map-all character for our Input Map. If you had mapped only

the Attributes that existed in the first version of this XML document, we would not have

retrieved Address when it appeared in the input.

Chapter 2. IBM Tivoli Directory Integrator concepts 33

Note especially the last two value entries under the Telephone Attribute, which is marked as

modify. The change to one of this Attribute’s value resulted in two Delta items: a value delete

and then an add.

Now when you wanted to build a data synchronization AssemblyLine in previous versions of

TDI, you needed to script in order to handle flow control. Although you could be receiving

adds, modifies and deletes from your change component/feature, a Connector could only be set

to one of the two required output modes: Update or Delete. So either you had two

Connectors pointing to the same target system and you put script in the Before Execute Hook

of each to ignore the Entry if its operation code did not match the mode of this component; or

you could have a single Connector (either Update or Delete mode) in Passive state, and then

control its execution from script code where you checked the operation code. And this still

meant that even though you knew what had changed in the case of a modified Entry, our

Update Mode Connector would still read in the original data before writing the changes back

to the data source. This can lead to unwanted network/datasource traffic when you are only

changing a single value in a multi-valued group related Attribute containing thousands of

values.

Enter the Connector Delta mode.

Delta Application (Connector Delta Mode): The Delta mode is designed to simplify the

application of delta information (read: make the actual changes) in a number of ways.

Firstly, Delta mode handles all types of deltas: adds, modifies and deletes. This reduces most

data synch ALs to two Connectors: One Delta Detection Connector in the Feeds section to pick

up the changes, and a second one in Delta mode to apply these changes to a target system.

Furthermore, Delta mode will apply the delta info at the lowest level supported by the target

system itself. This is done by first checking the Connector Interface to see what level of

incremental modification is supported by the data source2. If you are working with an LDAP

directory, then Delta mode will perform Attribute value adds and deletes. In the context of a

traditional RDBMS (JDBC), then doing a delete and then an add of a column value does not

make sense, so this is handled as a value replacement for that Attribute.

This is dealt with automatically by the Delta mode for those data sources that support this

functionality3. If the data source offers optimized calls to handle incremental modifications,

and these are supported by the Connector Interface, then Delta mode will use these. On the

other hand, if the connected system does not offer ″intelligent″ delta update mechanisms,

Delta mode will simulate these as much as possible, performing pre-update lookups (like

Update mode), change computations and subsequent application of the detected changes.

2. Note that the only Connectors that support incremental modifications are the LDAP and JDBC Connectors, since

LDAP directories provide this functionality.

3. Of course, you can control these built-in behaviors through configuration parameters and Hook code.

34 IBM Tivoli Directory Integrator 6.1: Users Guide

Component states

The state of a component determines its level of participation in the operation of the

AssemblyLine. In general terms, an AssemblyLine performs two levels of component

handling:

v Powering up the component at the start of AssemblyLine operation (Start-up Phase) and

closing it down when the AssemblyLine completes (Shutdown).

v Driving the component during AssemblyLine operation.

You can change the state of a component by right-clicking on it in the AssemblyLine

component list (AL DataFlow tab) and choosing the Enabled option, or by changing the State

drop-down in the Details window for that component. You can programmatically change the

State of AL components via the TCB (See “Disabling AssemblyLine components” on page 16).

Enabled state

Enabled is the normal component state. In Enabled state, a component is initialized during AL

Start-up, used during cycling and then closed when the AL shuts down. All component types

(Connectors, Functions, Scripts, AttributeMaps and Branches) can be set to Enabled State.

Passive state

Only Connectors can be set to Passive State. Passive Connectors (Connectors in Passive state)

are powered up and closed just like Enabled Connectors. However, they are not driven by the

AssemblyLine automated behavior. However, Connectors in passive state can be invoked by

script code from any of the control points for scripting provided by IBM Tivoli Directory

Integrator. For example, if you have a Passive Connector in your AssemblyLine called

myErrorConnector then you could invoke its add() operation with the following script code:

var err = system.newEntry(); // Create new Entry object

err.merge(work); // Merge in attributes in the work Entry

// This next line sets an attribute called Error

err.setAttribute ("Error", "Operation failed");

myErrorConnector.add(err) // Add new err Entry;

Disabled state

All component types can be set to Disabled State. In Disabled state, the component is neither

initialized (and closed) nor operated during normal AssemblyLine activation. If you want to

use it in your scripts, then you must initialize it yourself.

The name of a disabled Connector is registered but pointing at null, so you can write

conditional code like the following:

if (myConnector != null)

 myConnector.connector.aMethod();

to handle the situation where you plan on setting myConnector to disabled state.

This state is often used during troubleshooting in order to simplify the solution while

debugging, helping to localize any problems.

Chapter 2. IBM Tivoli Directory Integrator concepts 35

Adapters

In addition to the standard modes, you can define custom Connector modes by writing a TDI

Adapter. An Adapter is an AssemblyLine that is "wrapped" by an AL Connector so that it

exposes the operations defined for the AL as Connector mode settings. Adapters are easy to

distribute to other TDI developers, and just as simple to use as traditional Connectors.

Adapters enable developers to leverage the entire TDI arsenal when creating a custom

Connector with potentially complex business logic and custom operations to be offered to the

TDI development community.

A number of new features are described in the following sections that in combination make

Adapters possible.

The following scenario describes the high level flow of activities involved in implementing

and using a TDI Adapter:

1. Anne develops the Adapter AssemblyLine (for example to access a custom developed ERP

system) that implements the Connector modes to be supported (such as iterator and

delete), as well as custom modes as required.

2. Anne publishes the AL into a package that can be distributed to Pete, another TDI

developer, as a stand-alone file.

3. Pete copies the package into his TDI development environment. The new resource/library

model is ideal for this purpose, along with other components that Pete wants to re-use

across the TDI solutions that he routinely develops.

4. Pete uses Anne’s Adapter in his AL just like any other TDI Connector by using an AL

Connector to call the Adapter.

5. Anne can improve her Adapter and publish new versions by repeating the steps above.

Features that enable implementation of a TDI Adapter

This section discusses new features that are utilized to create and use Adapters. Most of these

features are not developed specifically for the Adapter concept, so they have many use cases

for non-Adapter use as well.

AL operations: Any number of operations can be defined in an AssemblyLine (AL). They are

similar to the call-return schema of the AL, but any number of operations can now be created.

When AL’s are called/executed through the API, from script, from the AL Function

Component, or from the AL Connector, an operation can now be specified along with the

required attributes for that operation. At run-time, the AL will know what operation has been

invoked, and the flow inside the AL can be adjusted accordingly.

These operations provide the entry points for the AL Connector to view and treat the Adapter

as a Connector. The entry points are the same as when developing a Connector in Java or

JavaScript, and are described in the IBM Tivoli Directory Integrator 6.1: Reference Guide. For

example, if the Adapter developer wants only to implement the Lookup mode, then it’s only

necessary to implement the findEntry operation.

36 IBM Tivoli Directory Integrator 6.1: Users Guide

Switch/case component: The Switch component is a new AL component that is similar to

switch constructs in traditional development languages. The Switch component is a variant of

the If-ElseIf-ElseIf component. Within the Switch component, a number of Cases are defined

that contain the AL components to be executed when the Switch statement matches the value

of the case.

One benefit of the Switch component is that it can automatically populate the case statements

based on the AL operations that have been defined. This way you can easily ensure that code

is implemented for all of the operations that have been defined.

A Switch can be based on one of the following mechanisms:

v On the value of a work Entry Attribute.

v Based on the AL Operation specified when this AssemblyLine was invoked.

v Based on Operations defined for a Connector (some Connectors can return a fixed set of

operations in an Attribute, for example the LDAP Server Connector or a Connector using

the DSML Parser).

v The delta operation code set in the work Entry (for example, add, modify, delete, and so

forth).

v A user-defined Expression.

Each method will return some value which is then used to match against Case components

set up under the Switch. A Case is always based on an Expression. Also, note that only Cases

that are matched are executed, so you do not have to exit the Switch manually (as is the case

for Switch-case in many 3GL programming languages).

Flexible connector initialization: Prior to IBM Tivoli Directory Integrator 6.1, all Connectors

in an AssemblyLine were initialized during the AL initialization phase. Dynamic configuration

of a Connector usually required termination of a connection, modification of the connection

parameters, and then a re-establishment of the connection – all through script. The alternative

was to establish and use the Connector solely through script.

In TDI 6.1, Connectors can optionally initialize:

On demand

The connection is established not at AL initialization, but as control tpasses for the

first time to this Connector during the AssemblyLine execution phase (Flow). This

means that a complex AL will only initialize the Connectors that are actually used.

Every time

The Connector initializes every time as control is passed to it. This is useful when the

connection parameters (such as a file name or LDAP credentials) are part of the

information passed into each call to the Adapter. A separate benefit is that this

capability is also helpful when using pooled Connectors, as “every time” will result in

acquiring a Connector instance from the pool at run-time, and then released after use.

In essence, this implements a “shared/re-use” Connector pool across AL’s.

Chapter 2. IBM Tivoli Directory Integrator concepts 37

When config has changed

The Connection is re-initialized if the configuration parameters have changed since

the previous initialization of the Connector. With the new parameter substitution

feature, Connectors can be dynamically configured much easier than before. This

facilitates changing the connection parameters of a Connector – and forcing

re-connection – from both inside the AL as well as outside. For example, another AL,

or a command-line modification of properties can result in an AL automatically

re-connecting to its targets with much less effort than before.

Using an Iterator in Flow: Iterators have previously only been used in the Feed section to

drive the entire AL cycle, or within the Flow to power a Loop component. Now an iterator

can be placed in the Flow itself to facilitate implementing iterator mode in an Adapter. To

understand this, a short review of how the iterator works is in order. First selectEntries() of

a Connector (or for Adapters, the selectEntries operation as described below in “ The use of

operations in a TDI Adapter”), is called to create the result set, then getNextEntry() is called

to read from the result set until it’s empty. By limiting iterators to the Feed section, it would

be very impractical to implement a getNextEntry operation that returned the next record from

an iterator Connector in your Adapter. With an iterator in the Flow, your getNextEntry

operation could utilize an iterator Connector.

Packaging an Adapter for consumption: The following section describes packaging an

Adapter for consumption using the following scenario: Helping Anne package her Adapter

component and publish it for others to consume.

When the Adapter has been developed, the Publish command in the TDI development

environment creates a Package of Anne’s AL. Publishing an AL means resolving all

inheritance and dependencies between the Adapter AL and the rest of Anne’s development

environment.

The Package consists of a standard, stand-alone config XML file that only contains the

Adapter code that can be sent to other TDI developers for inclusion in their resource library.

The package can be saved anywhere, but the default location is the packages directory in

Anne’s TDI solution directory. When the Adapter is published, it shows up in the Adapter

section of the resources library, in the Connector list as an available Connector, and can also

be queried from the AL Connector.

The difference between a Package and an Adapter is that Adapters are Packages that are

intended to be used as Connectors. Other Packages simply contain AssemblyLines that can be

called with the AL FC or other mechanism to run an AL.

Improved GUI to facilitate use of re-usable components: This section describes the

following scenario: Extending the development environment so that Pete can receive an

Adapter package and store it in his local environment.

A “Resource Library” has been added to the TDI development environment. It can contain

any TDI components, such as Connectors, Parsers, and even ALs. It’s a place to keep re-usable

38 IBM Tivoli Directory Integrator 6.1: Users Guide

Connectors, Attribute maps, Loops, script components. Previously, shared components across

Configs had to be implemented with include commands. Now they are visible in the Config

Editor and can easily be used across Configs.

Adapters have their own tab in the Resource Library. Adapters need to be located either in

the jars directory tree (for maintainability reasons it’s suggested to create an /adapter

sub-directory under jars) or in the adapter directory in your TDI solution directory.

In addition to being a repository for Adapters, the Resource Library addresses a long wished

for capability among TDI developers to have an easy-to-use mechanism to save components

and code that can be used across TDI projects.

Using an Adapter in your AssemblyLine: This section describes the following scenario:

Providing the interfacing mechanism so that Pete can utilize the Anne’s Adapter in his own

AssemblyLines as any other Connector

There are a number of mechanisms available when calling an AL from another AL. However,

when an AL has been developed as an Adapter, then the primary mechanism to use is the

AssemblyLine Connector. The AssemblyLine Connector existed in TDI 6.0, but it has been

greatly improved to deal with Adapter-style ALs. In 6.0, it could only be used to iterate on the

output of another AL. In TDI 6.1, when the AL Connector is used in an AssemblyLine, it is

configured by specifying what Adapter it should call. The target Adapter is then inspected for

operations, and that determines which Connector modes are made available to the developer.

As a convenience feature, TDI automatically wraps all Adapters so that they look like

Connectors in the Connector list. Pete can therefore choose to insert an Adapter directly from

his Connector list, or can insert an AL Connector and then specify the desired Adapter to call.

The configuration of the Adapter is done in the usual Connector config panel. All parameters

displayed here are defined in the schema of the reserved operation $initialization of the

Adapter. This provides the TDI developer with a mechanism to send configuration parameters

to the Adapter for dynamic configuration of its Connectors.

The flexible initialization of Connectors feature, new in 6.1, is useful here, in that it can be

used both in the AL that calls the Adapter, as well as in the Adapter itself. Using on demand

or every time initialization of the Adapter, the calling AL can use information retrieved

during its execution phase to configure the Adapter, rather than having to pre-configure this

through more static mechanisms as has been the case before TDI 6.1.

The use of operations in a TDI Adapter

To implement the TDI Connector modes, AL operations must be created in the Adapter that

correspond to the Connector primitives that any Connector has to implement, just as if it was

implemented in Java or JavaScript. The AL Connector will automatically determine what

modes are available by inspecting the operations that have been defined in the Adapter. It’s

only necessary to implement the operations that correspond to the modes that you want the

Chapter 2. IBM Tivoli Directory Integrator concepts 39

Adapter to expose. Operations that do not correspond to any in the table below are exposed

as additional Adapter modes, and executed in call/reply mode by the AL Connector.

Mapping Adapter operations to Connector modes: The following are the methods that a

developer has to consider when implementing a TDI Connector in Java or JavaScript. Please

refer to the “Implementing your own components” chapter in the IBM Tivoli Directory

Integrator 6.1: Reference Guide, to fully understand the relationships between these methods

and the Connector modes that they implement. For example, to implement Lookup mode in

an Adapter, only the findEntry operation needs be defined.

 Table 2. Adapter operations and Connector modes

Iterator Lookup Addonly Update Delete Delta CallReply Server

initialize (X) (X) (X) (X) (X) (X) (X) (X)

querySchema (X) (X) (X) (X) (X) (X) (X) (X)

selectEntries (X)

getNextEntry X X

findEntry X X X (X)

modEntry X X

putEntry X X X (X)

deleteEntry X X

queryReply X

getNextClient X

terminate (X) (X) (X) (X) (X) (X) (X) (X)

Notes on table:

v (X) means optional. Will be called if they exist.

v Delta mode is handled in a special manner.

v Server mode is not currently supported in Adapters

v The operation names are case sensitive

Implementing code in the Adapter for each operation: The Adapter AL is called by the AL

Connector according to the rules for the modes that are exposed – through the operations

illustrated in the table above. The Adapter must check for what operation has been invoked

and execute the corresponding code in the AL. The Switch Component is well suited for this

purpose, but the If-Else Components can be used as well by creating conditions using the

op-entry.$operation attribute which will be set each time the AL is called with an operation.

This attribute may of course be used in a script as well.

Op-entry is a new Entry object. Like the work object it’s created by the AssemblyLine, but it

doesn’t get cleared every time the AL cycles. It’s used to store attributes that the AL needs

throughout its lifecycle.

40 IBM Tivoli Directory Integrator 6.1: Users Guide

Adapter configuration through the $initialization operation: All attributes that are defined

in the schema of the $initialization operation of the Adapter are displayed in the

configuration panel of the AL Connector that calls the Adapter. These attributes are passed to

the Adapter at initialization time so that the Adapter can perform the necessary preparation

and connection to the target systems.

The attributes defined in the $initialization schema are available to the Adapter throughout

its lifecycle as attributes in the op-entry attribute.

Connectors in the Adapter can be configured with these attributes by using expressions in the

Connector parameter fields. For example, if the Adapter has defined an ou attribute in its

$initialization schema, then the user of the Adapter will see ou as one of the configuration

parameters in the AL Connector. The Adapter could then define a search base in an LDAP

Connector as:

cn=...,ou={op-entry.ou}

These attributes will be available at the initialization time of the Adapter, which by default is

the same time as the calling AL is initialized, unless on of the mechanisms described above in

section “Flexible Connector initialization” is utilized.

Understanding the link criteria: The Link Criteria defined in the AL Connector is passed

into the Adapter through the search object (SearchCriteria) in op-entry object.

Extracting the individual criteria objects can be done with the following script code:

search = Task.getOpEntry().getObject(“search”);

criteria = search.getCriteria(0); /* index ranges from 0 to search.size() */

name = criteria.name; /* target attribute */

match = criteria.match; /* expression (less, greater, equal.. */

value = criteria.value; /* value to test the target attribute against through

 the expression */

negate = criteria.negate; /* Boolean flag */

Each criteria object contains the attributes: name, match, value, and negate (Boolean).

The search object provides convenience methods to create LDAP, Domino and SQL search

strings based on its link criteria. Please refer to the Javadocs for further information.

Attribute mapping: When the Adapter operations are called through the AL Connector, the

work Entry is populated with the attributes in the output map of the AL Connector. On

return, the AL Connector expects returned attributes either in work, or in the conn object.

From the calling AL into the Adapter: The Adapter must use script methods such as:

email = work.getString(“email”);

Chapter 2. IBM Tivoli Directory Integrator concepts 41

to extract the value of the email attribute so that it can be used in further attribute mapping

inside the Adapter. A practical suggestion is to insert an AL level Attmap component early in

the Adapter to extract the desired attributes from conn and make them visible in work for

easy reference in the rest of the Adapter.

Return data from the Adapter to the calling AL: The modes Iterator, Lookup and Callreply,

return data to the calling AssemblyLine and populate the output map of the AL Connector.

The simplest way to return attributes to the calling AL is through the work object. Any

attributes left in work at the end of the Adapter cycle will be passed back to the input map of

the calling AssemblyLine Connector. It’s therefore important to remove temporary work

attributes at the end of the Adapter so that they don’t get returned as well.

work.removeAttribute(“attributeName”);

The Adapter indicates end of data by returning an empty conn object in work. An empty

work object is not sufficient since that is merely interpreted as an empty record by the AL

Connector. To indicate end of data by the iterator work.newAttribute(“conn”);

Lookup mode: Lookup mode may return multiple records. If it is necessary to return more

than one record, the Adapter must create the Entry attribute conn in the work Entry that can

contain zero, one, or more values of type Entry. Further on in this section there’s some script

code to illustrate how this can be achieved in an Adapter.

The following is a mix of JavaScript and pseudo-code to illustrate the part of implementing

the findEntry operation (that implements lookup mode) where attributes are mapped into a

structure that can be returned to the AL Connector in the calling AL.

The example illustrates two ways to return multiple records to the calling AL. The example

on the right hand side is simpler because work is cleared for each iterator cycle, and all the

values in work are therefore a result of the iterator’s output map, and can therefore be added

to acc (acc is shorthand for accumulator) in a single operation. An important note is that

getClone() needs to be used to ensure that the value of the attributes are copied into acc.

acc = system.newEntry().newAttribute(“conn”);

Loop on iterator (that returns attributes a,b,c from

target into work)

{

 /* all of the below would be located in a script

 component inside the Loop component */

 temp = system.newEntry();

 temp.setAttribute(work.getAttribute(“a”));

 temp.addAttribute(work.getAttribute(“b”));

 temp.addAttribute(work.getAttribute(“c”));

 acc.addValue(temp) ;

}

work.setAttribute(”conn”, acc);

Clear work for each Iterator cycle:

42 IBM Tivoli Directory Integrator 6.1: Users Guide

work.removeAllAttributes();

acc = system.newEntry().newAttribute(“conn”);

Loop on iterator (that returns attributes a,b,c from

target into work)

{

acc.addValue(work.getClone());

 work.removeAllAttributes();

}

work.setAttribute(”conn”, acc);

Status indication: A good practice is to return the attribute recordsProcessed to indicate how

many records were deleted, modified, or otherwise processed. This attribute can be passed

back to the calling AL as in the work object. To indicate an error situation where the AL

Connector should invoke one of the error hooks in the calling AL, the Adapter needs to throw

an exception. Please refer to the section on error handling for more details on this.

Implementing Query Schema: A user of the Adapter will want to discover the schema of

the Adapter. This is typically done when configuring the AL Connector where there are

buttons to connect and to query schema. If the Adapter implements a static schema, then the

simple solution is to create a querySchema operation in the Adapter, and define the schema

there. The schema defined in the querySchema operation will be common for all standard

Connector modes. Specific schemas can be defined for any non-standard modes. For example,

if the Adapter implements an “AddUser” operation, then it can have its own schema defined.

Delta mode: Delta mode is handled somewhat differently from other modes because there

are two different scenarios for handling delta data – meaning an Entry that has been tagged

for change at the Entry, attribute and/or value level.

1. If the target system (or implemented in the Adapter) supports change based modification

(for example, LDAP allows individual values to be updated in a specific attribute in a

specific entry without supplying any of the other values of the attribute). These systems

are defined as “Delta savvy” and indicated that the Adapter can deal with a tagged Entry.

2. For other systems, Delta mode can be simulated by performing either delete, add, or a

sequence of find and then applying the proper changes to the record before writing the

entire record back with modify. This is something that the AL Connector can do by using

the basic Adapter primitives, but the Adapter needs to indicate that this is desired

functionality.

To enable Delta behavior in an Adapter, first the Delta operation needs to be defined. The

next option is to create an attribute deltaSavvy in the Delta schema. Without the deltaSavvy

attribute, the AL Connector will simulate the Delta mode as described above. With the

deltaSavvy attribute in place, the AL Connector not call findEntry first, but rather call

modEntry operation directly where it’s the Adapters job to inspect the attributes for tags and

apply the appropriate commands against the target system.

Error handling: Throw exception in your Adapter code to let the calling AssemblyLine drop

the user into error hooks of the AL Connector, such as:

throw new java.lang.Exception (“error message”);

Chapter 2. IBM Tivoli Directory Integrator concepts 43

Parsers

Parsers are used in conjunction with a byte stream component (for example, File System

Connector) to interpret or generate the structure of content being read or written.

When the byte stream you are trying to parse is not in harmony with the chosen Parser, you

get a sun.io.MalformedInputException. For example, the error message can show up when

using the Input Map tab to browse a file.

The IBM Tivoli Directory Integrator Config Editor provides three places where you can select

Parsers:

1. In the Parser tab of a byte stream Connector

2. In an Apply Parser Action (in the Action Map tab of an EventHandler)

3. From your own scripts (for example, Hooks, script components and Custom Script Actions

in EventHandlers)

For more information about individual Parsers, see ″Parsers″ in IBM Tivoli Directory Integrator

6.1: Reference Guide.

Character Encoding conversion

Java2 uses Unicode as its internal Character Encoding. When you work with strings and

characters in AssemblyLines and Connectors, they are always assumed to be in Unicode. Most

Connectors provide some means of Character Encoding conversion. When you read from text

files on the local system, Java2 has already established a default Character Encoding

conversion which is dependent on the platform you are running. More information about

character sets in Appendix D, “Double byte character sets in IBM Tivoli Directory Integrator,”

on page 263.

The TDI Server has the -n command line option, which specifies the character set of Config

files it will use when writing new ones; it also embeds this character set designator in the file

so that it can correctly interpret the file when reading it back in later.

However, occasionally you read or write data from or to text files in which information is

encoded in different Character Encodings. For example, Connectors that require a Parser

usually accept a characterSet parameter in the Parser configuration. This parameter must be

set to one of the accepted conversion tables as specified by the IANA Charset Registry

(http://www.iana.org/assignments/character-sets).

Availability

Please refer to the IANA Charset Registry (http://www.iana.org/assignments/character-sets).

44 IBM Tivoli Directory Integrator 6.1: Users Guide

http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets

Function Components (FC)

A Function Component is an AssemblyLine wrapper around some function or discreet

operation, allowing it to be dropped into an AL as well as instantiated/invoked from script.

The idea behind FCs is to allow complex components (for example, the Web Services

EventHandler) to be split into smaller logical units and then strung together as needed; as

well as to provide more visual ″helper″ objects where custom scripting was necessary before.

FCs also offer the functionality previously provided by EventHandler Actions (e.g. launching

ALs, invoking Parsers, etc.). As with all TDI components, the user can easily create their own

Scripted FCs, turning custom logic into a library of reusable AL components.

FCs are similar to Connectors in CallReply mode in that they have both Input and Output

maps4. The Output Map is used to pass parameters to the FC, while the Input Map lets you

retrieve and manipulate return data.

Also like Connectors, FCs have State which can be set to Active, Passive or Disabled. State

behavior is identical with that of Connectors. Since FCs are registered as script variables

(beans) when the AL starts up, you can access them directly from your script using the name

given them in the AL.

 myFunction.callreply(work)

The above example is invoking the AssemblyLine Function called ″myFunction″. Note that

calling the AssemblyLine Function method callreply() will cause Attribute Maps and the

normal FC Hook flow to be executed.

Like the other components, FCs have a library folder in the Config Browser where you can

configure and manage your FC library. These can be then dragged into ALs or chosen from

the selection drop-down that appears when you press the Add Component button under the

AL Connector List.

Also like the other components, FCs have an Interface part (like the Connector Interface or

Parser Interface, in the case of FCs called the Function Interface) that implements the function

logic. When an FC is dropped into an AL, it is wrapped in an AssemblyLine Function object

which provides the generic functionality necessary for the AL to manage and execute it.

The Function Interface

There is also a system.getFunction() method to instantiate Function Interfaces (the

underlying function itself) that works similarly to the system.getConnector() function. In fact,

using an FC from script is very similar to working with a Connector Interface.

// Get FC (Function Interface) named "customFC"

var fc = system.getFunction("customFC");

// Initialize the FC

fc.initialize(null);

// Invoke the function, passing in the object needed (work Entry in this case)

4. The Function Interface method called when the FC is executed during AL cycling is actually callreply().

Chapter 2. IBM Tivoli Directory Integrator concepts 45

// This FC returns an Entry object when the call is successful

var retEntry = fc.perform(work);

// Close the FC

fc.terminate();

As with Connector Interface functions, making the perform() call above will not execute

Attribute Maps or Hook flows.

As seen in the above example, FCs have an interface of three main methods5:

initialize(obj)

Initializes the Function Component. The obj parameter is the parameter block as

described by your FCs Config dialog.

terminate()

Closes down the FC, releasing resources etc.

perform(obj)

This calls the function itself, making the FC do its work. Here again the obj parameter

is whatever you have defined as necessary input params for your function. For

example, this can be an Entry object, or a string command, as described below under

the AssemblyLine Function Component.

.

 The individual Function Components which are part of IBM Tivoli Directory Integrator are

described in detail in IBM Tivoli Directory Integrator 6.1: Reference Guide.

Link Criteria

The Link Criteria is used to tell a Connector in Update, Lookup and Delete how you define a

match between data attributes in the AssemblyLine and those found in the connected system.

The Link Criteria is accessible in the Config Editor through the Link Criteria, which is only

enabled for Connectors in Update, Lookup and Delete Connectors.

There are two types of Link Criteria, Simple and Advanced.

Simple Link Criteria

For each simple Link Criteria, specify the Connector Attribute (those attributes defined in the

Connector Schema), the Operator to use (for example, Contains, Equals, and so forth), and the

Value to use with the operation. The value you use can be entered directly, or it can refer to

the value of an attribute in the work Entry which is available at this point in the

AssemblyLine flow. When the Connector performs the Lookup operation (for Lookup, Update

5. You can optionally implement the getUI(fc) method, returning a JComponent that describes the Config screen of

your FC, allowing you to create a dynamic Config interface for your FC. Note that the other TDI components also

provide this feature.

46 IBM Tivoli Directory Integrator 6.1: Users Guide

and Delete modes) it converts the Link Criteria to the data source-specific call, enabling you

to keep your solution independent of the underlying technology.

If you want to build a Link Criteria using the value of an attribute in the work Entry, simply

use the name of the attribute in the Value field of the Link Criteria, preceded by the dollar

sign ($). So, if you want to match the attribute named cn with an attribute in the work Entry

called FullName, your Link Criteria is specified as:

cn EQUALS $FullName

If you want to find a specific person directly, set the Link Criteria with a literal constant

value:

cn EQUALS Joe Smith

Note: The dollar sign ($) matches the first value of a multi-valued attribute only. If you

want to match an attribute in the data source with any of the multiple values stored in

a work Entry attribute instead, then use the at symbol (@). For example:

dn EQUALS @members

This example tries to match the dn attribute in the connected system to any one of the values

of the multi-valued attribute in the work Entry named members

A Connector can have multiple Link Criteria defined, and these are normally connected

together (by use of the boolean operator AND) to find the match.

However, if you click the Match Any checkbox, just one of the Link Criteria needs to match,

the equivalent of an OR operation.

Note that name of Attribute to match can be specified as an Expression (See “Expressions” on

page 111 for details). The possible formats for the Value field of a Simple Link Criteria are:

A text string

Mapped to a constant with that value.

$Name Corresponds to work.getString(″Name″), that is the first value of the attribute Name.

@Name

One of the values of the multi-valued attribute Name.

A TDI Expression

Described in detail here: “Expressions” on page 111.

Advanced Link Criteria

You can also create your own custom search criteria by checking the Build criteria with

custom script check box. This presents you with a script editor to write your own Link

Criteria expression. Not all Connectors support the Advanced Link Criteria, and the

Connector documentation states whether or not Advanced Link Criteria is not supported. See

″Connectors″ in IBM Tivoli Directory Integrator 6.1: Reference Guide.

Chapter 2. IBM Tivoli Directory Integrator concepts 47

The search expression that you build might comply with the syntax expected by the

underlying system. In order to pass your search expression to the Connector, you must

populate the ret.filter object with your string expression.

A simple JavaScript example for an SQL Connector is:

ret.filter = " ID LIKE ’" + work.getString("Name") + "’";

This custom Link Criteria assumes an example where the data source has an attribute called

ID (typically a column name) that we want to match with the Name attribute in the work

Entry.

Notes:

1. The first part of the SQL expression, Select * from Table Where, is provided by the IBM

Tivoli Directory Integrator.

2. Single quotes have been added because work.getString() returns a string, while SQL

Syntax asks for single quotes around strings constants.

3. The special syntax with $ and @ is not used here.

Link Criteria errors

The most common error you get when using Link Criteria is:

ERROR> AssemblyLine x failed because

No criteria can be built from input (no link criteria specified)

This error occurs when you have a Link Criteria which refers to an attribute that cannot be

found during the Lookup. For example, with the following Link Criteria:

uid equals $w_uid

Link Criteria setup fails if the w_uid is not present in the work entry. This might be because

it has not been read from the input sources (for example, not in an Input Map or missing

from the input source) or has been removed from the work Entry in a script. In other words,

the function call work.getAttribute("w_uid") returns null.

One way to avoid this is to write some code in the Before Execute Hook of the Lookup,

Delete or Update mode Connector that skips its operation when the Link Criteria cannot be

resolved due to missing attributes. For example:

if (work.getAttribute("w_uid") == null)

 system.ignoreEntry();

Your business logic might require other processing, such as a skipEntry() call instead of

ignoreEntry(), which causes the AssemblyLine to stop processing the current entry and begin

from the top on a new iteration. The ignoreEntry() function simply skips the current

Connector and continues with the rest of the AssemblyLine.

48 IBM Tivoli Directory Integrator 6.1: Users Guide

EventHandlers

The concept of EventHandlers has been replaced by Server Connectors in IBM Tivoli

Directory Integrator 6.1. In place of EventHandlers, you can use a suitable Connector in

Server mode to simplify the task of event handling. See “Server mode” on page 29 for more

information.

Note: In pre-6.1 Configs that employ them, EventHandlers can still be used.

Scripting

IBM Tivoli Directory Integrator provides its users with a highly-flexible engine that can be

customized both from the user interface controls of IBM Tivoli Directory Integrator Config

Editor, as well as through scripting of custom logic. While the user interface controls provide

a means of controlling the data flow at a higher level, scripting provides users with the ability

to control almost any aspect of the data flow at any level (including overriding standard IBM

Tivoli Directory Integrator processing). Special functions are available in the system object to

reiterate on an AssemblyLine Entry, skip a Connector and start new AssemblyLines or

EventHandlers.

IBM Tivoli Directory Integrator provides support for JavaScript as a scripting language.

Note: Support for any scripting language other than JavaScript has been withdrawn from this

version of IBM Tivoli Directory Integrator and onwards. This means that support for

scripting languages like JScript and VBScript has disappeared, and any of your

solutions depending on those languages to interface with Windows® objects should be

converted to use the COMProxy Object, which provides the glue between the

JavaScript language and COM Objects on Windows. Refer to the Javadocs for more

information about the COMProxy Object.

See ″Script languages″ in IBM Tivoli Directory Integrator 6.1: Reference Guide for more

information on how scripting is supported in IBM Tivoli Directory Integrator.

Controlling the flow of an AssemblyLine

Hooks are programmable waypoints in the built-in automated behavior of IBM Tivoli

Directory Integrator where you can impose your own logic. Hooks are found in

EventHandlers, AssemblyLines and Connectors. For example, if you want to skip or restart

parts of the AssemblyLine entirely, you typically do this from within a Hook in a Connector:

Note: The constructs below can be used to exit a Branch Component or Loop, too.

system.ignoreEntry()

Ignore the current Connector and continue processing your existing data entry with

the next Connector.

system.skipEntry()

Skip (drop) the entry completely, return control to the start of the AssemblyLine and

get the next entry from the current Iterator.

Chapter 2. IBM Tivoli Directory Integrator concepts 49

system.restartEntry()

Restart from the beginning of the AssemblyLine, forcing the current Iterator to reuse

the current entry.

system.skipTo(String name)

Skip to the named Connector.

system.abortAssemblyLine(String reason)

Abort the entire AssemblyLine with the specified error message.

Note: If you put any code in an Error Hook and do not terminate the current AssemblyLine

or EventHandler, then processing continues regardless of how you got to the Error

Hook. This means that even syntax errors in your script are ignored. So be sure to

check the error object if you want to know what caused the error.

The methods described in the previous list can be regarded as goto-statements, in that no

further code in this hook is run. For example:

system.skipEntry(); // Causes the flow to change

// This next line is never executed.

task.logmsg("This will never be reached");

When scripting is needed

Scripting is necessary when you need to add custom processing to your AssemblyLine or

EventHandler. Examples of where scripting can be helpful include:

v The value of an output attribute needs to be calculated based on one or more input

attributes (attribute manipulation or computation).

v You want to process only entries that match a particular set of criteria (data filtering).

v Invalid data values need to be reported or corrected (data consistency or validity checking).

v You want to override the update operation of the Connector you are using (flow control).

v You want to run some initializing procedures before your AssemblyLine starts

(initialization).

Each of these cases mentioned (and many others not mentioned) require scripting.

Integrating scripting into your solution

As already explained, you use script whenever you need custom processing in your

integration solution. Best practices with IBM Tivoli Directory Integrator divide this custom

processing into two categories: attribute transformation and flow control.

Note: This is convention, and not a limitation or rule enforced by the system. The need for

custom data processing inevitably comes at some identifiable point in the flow of data

(for example, before any processing begins, before processing a particular entry, after a

failure, and so forth), so by placing your code as close to this point as possible, you can

make solutions that are easier to understand and maintain.

The logical place to do the attribute transformations is in your Attribute Maps, both Input

and Output. If you need to compute a new attribute that is required by scripted logic or other

50 IBM Tivoli Directory Integrator 6.1: Users Guide

Connectors downstream in the AssemblyLine, best practice is to do this in an Input Map if

possible. Alternatively, if you must transform attributes for the sake of a single output source,

then you can avoid cluttering the work Entry object with output-specific transformations by

putting these in the relevant Connector’s Output Map.

The other category of custom logic, flow control, is best implemented in the Hooks that are

invoked at that point in the automated workflow where the logic is needed. These control

points are easily accessed from the IBM Tivoli Directory Integrator Config Editor.

Implementing custom processing is simply a matter of identifying the correct control point

and adding your script in the appropriate edit window.

AssemblyLine Script Components also provide you with a place to create your own custom

processing, and then enable you to reposition your code within the AssemblyLine. Although

Script Components are frequently used during test and debugging, they can also serve an

important role in a production Config. Just remember to name your components clearly and

to include some documentation in the script itself to explain (to others, as well as yourself

when you have to revisit your code some time later) why you implemented this logic in a

Script Component, and not in an Attribute Map or Hook.

And while it is important to both correctly identify the appropriate control point where you

input your script, it is equally important to limit the scope of your script to cover just that

single goal associated with the control point. If you keep your units of logic independent of

each other, then there is a greater chance that they are reusable and less of a chance that they

might break when components are reordered or reused in other contexts. One way to build

reusable code is by creating your own functions in your Script Library (or a Prolog Hook) to

implement frequently used logic, instead of copying and pasting the same code into multiple

places.

To sum up some of the best practices that you want to keep in mind while building solutions:

v Do attribute manipulation in Attribute Maps.

v Put flow control (filtering, validation, branching, and so forth) Hooks, and where necessary,

AssemblyLine script components.

v Use the automated behavior as much as possible (for example, AssemblyLine workflow and

Connector modes).

v Simplify your solution by keeping AssemblyLines short and focused.

v Put often used logic in functions (for example, Script Library).

v Think reuse.

It is worth mentioning again that although the methods outlined previously are best practices,

you might encounter situations where you have to deviate from established convention. If this

is the case, your solution documentation is vital for maintaining and enhancing your work

over time.

Chapter 2. IBM Tivoli Directory Integrator concepts 51

How scripting affects execution

The IBM Tivoli Directory Integrator engine exposes a number of classes and object instances

that can be accessed, read and modified from user-created scripts in an EventHandler or

AssemblyLine. These objects represent the state of the EventHandler or AssemblyLine and the

whole IBM Tivoli Directory Integrator environment at any moment. By modifying any of

these objects, you modify the IBM Tivoli Directory Integrator environment and thus affect the

execution of the integration process.

Note: Changes can be applied to either instances of a component, AssemblyLine or

EventHandler. Changes can also be made to operational parameters (such as system or

Java parameters). Changes can also be made to the Config. In this case, new instances

of Config objects reflect these Config changes.

For more information about the global objects, see the Javadocs included as part of the IBM

Tivoli Directory Integrator product (select Help>Low Level API in the Config Editor).

A description of all classes and instances available can be found in the installation package.

By understanding the classes and interfaces exposed, you can better understand the elements

of the IBM Tivoli Directory Integrator engine as well as the language it speaks.

Using variables

It is important to distinguish between the standard container object for data being processed

(the Entry object) and other generic variables and data types provided to you by your chosen

scripting language, as well as those that you create yourself. Your creativity and the

capabilities of the scripting languages are your only restrictions in terms of what can be

placed in the scripting windows. However, when you manipulate data in the context of the

data flow, you must be aware of and utilize the structure of the Entry object.

Entry objects carry attributes, which are themselves the container for data values. Attribute

values are themselves objects (java.lang.String, java.util.Date and more complex structures).

An attribute value can even be another Entry object with its own set of attributes and values.

It is the job of IBM Tivoli Directory Integrator to understand how data is stored in the

connected system, as well as how to convert these native types to (and from) the system’s

own data representation (Java objects).

If you open the Input Map tab for a Connector, click the Connect to the data source button,

and then click the Read the next entry button. You see the attributes discovered in the first

object found in the data source. The column labelled Java Class shows you how the

Connector is converting native data types to the system’s internal Java representation. Click

the Discover the schema of the data source button to return the full definition of attributes

defined for the object you are looking at (for some data sources). The column named Native

Syntax displays the data types used by the data source to represent these values.

52 IBM Tivoli Directory Integrator 6.1: Users Guide

If you know the attribute value’s class, you can successfully access and interpret this value.

For example, if a java.lang.String attribute contains a floating point value that you want to

use as a floating point, you must first manually transform this value (by means of the

scripting language) to some numeric data type.

When creating variables or processes not directly related to the data flowing in the integration

process and the global objects available, the following principle applies: You can declare and

use any variables (objects) enabled by the scripting language you choose. The purpose of

these variables is to help you achieve the specific goal associated with the control point in

which you script. The variables must serve only as temporary buffers and not attempt to

affect the state of the IBM Tivoli Directory Integrator environment.

Control points for scripting

Scripting in an AssemblyLine

AssemblyLine hooks: These hooks are found in the Hooks tab of the AssemblyLine. These

Hooks are all executed only once per AssemblyLine run, or, in the case of Shutdown Request,

whenever the AssemblyLine has been told to shutdown by some external process. However, if

you start your AssemblyLine multiple times (for example, by using an EventHandler), then

you start the hooks multiple times as well.

Script Component

You can add Script Components to your AssemblyLine in addition to Connectors by clicking

the Add script component button under the Data Flow tab in the AssemblyLine. The Script

Component is started once for each entry processed by the AssemblyLine (such as a

Connector) and can be placed anywhere in the AssemblyLine.

Note: Iterators are still processed first, even if you place your Script Component before them

in the AssemblyLine.

Scripting in a Connector

Input Map and Output Map

Custom attribute mapping is performed in these tabs. When the attribute is selected,

you must select the Advanced Mapping checkbox, and input your script in the edit

window. Remember that after you have done all processing necessary, you must

assign the result value achieved to ret.value, for example:

 ...

ret.value = myResultValue;

Connector Hooks

Hooks give you the means to respond to certain events that occur, and override the

basic functionality of a Connector. You have access to the global IBM Tivoli Directory

Integrator objects when scripting hooks, although some of the standard objects might

not be available in every hook. For details on temporary object availability, see

″AssemblyLine and Connector mode flowcharts″ in IBM Tivoli Directory Integrator 6.1:

Reference Guide. You also have full control over the IBM Tivoli Directory Integrator

Chapter 2. IBM Tivoli Directory Integrator concepts 53

environment, the AssemblyLine, the Connector, entries and attributes. Hooks give you

a diversity of control points for customizing the process flow. See “Hooks” on page

65.

Setting internal parameters by scripting

It is possible to set Internal Parameters for a Connector by scripting, such as in the following:

myConnector.setParam ("filePath", "examples/scripting/sample.csv");

This is typically something you do in the Prolog, but it can be very useful while the

AssemblyLine is running as well (provided that you stop and reinitialize the Connector).

myConnector.terminate()

myConnector.setParam ("filePath", "examples/scripting/sample.csv");

myConnector.initialize(null);

Scripting in a Parser

Scripting in a Parser actually refers to implementing your own Parser by scripting. A

description of this process is included in ″Script Parser″ in the IBM Tivoli Directory Integrator

6.1: Reference Guide.

Scripting in TDI

Out of the box, TDI provides the tools to quickly snap together the framework of an

integration solution. But for all but the most trivial migration jobs, you will need to customize

and extend the built-in behavior of TDI by writing JavaScript.

IBM Tivoli Directory Integrator is pure Java. Whenever you issue a command to TDI, work

with components and objects, or manipulate data in your flow, you are working with Java

objects. Your customization on the other hand is done in JavaScript, and this marriage of two

ostensibly similar, yet fundamentally different programming languages warrants closer

examination.

If you have experience with JavaScript, great; if you don’t, then you will be getting some here

in these examples. However, this manual does not teach JavaScript itself – merely its

application in TDI. You will need to secure your JavaScript reference materials elsewhere.

There are a number of commercially available reference guides to JavaScript, as well as

documentation, tutorials and examples on the net. Note however that much of the JavaScript

content out on the web is related to beautifying and automating HTML content. You need

only concern yourself with the core language itself, as it is described at the following link:

http://devedge-temp.mozilla.org/library/manuals/2000/javascript/1.5/guide/index.html

There is also a handy link on this site for downloading the reference in HTML format for

installation locally. An excellent handbook on JavaScript is ″The Definitive JavaScript Guide″, 4th

Edition by David Flanagan (O’Reilly).

54 IBM Tivoli Directory Integrator 6.1: Users Guide

http://devedge-temp.mozilla.org/library/manuals/2000/javascript/1.5/guide/index.html

You will also want the Javadocs for Java as well, since all TDI objects, as well as the data

values inside your solution, are in the form of Java objects. This can be found online at this

URL:

http://java.sun.com/j2se/1.4.2/docs/api/index.html

The J2SE documentation itself can be found here:

http://java.sun.com/j2se/1.4.2/docs/index.html

Script Editor

TDI provides a simple script editor which offers common features like Copy, Cut and Paste,

Undo/Redo and Free-text searching. If you already have a preferred script editor, you can

configure TDI to use it via the Editor Settings tab of the File>Edit Preferences dialog. This

will allow you to use the Launch External Editor button found in the Toolbar of the internal

script editor.

TDI Internal Data Model (Entries, Attributes and Values)

When TDI components read in information from connected systems, they convert the data

from system-specific types to an internal representation using Java objects. On output,

components convert the other way, going from this internal data model to the native types of

the target system. This same internal representation is used when you wish to pass data to

and from AssemblyLines. It is therefore vital that you understand how the TDI internal data

model works.

Looking in detail at when a data value is received by a component, a corresponding TDI

Attribute object is created using the name of the attribute being read. The data value itself (or

values, if it is a multi-valued attribute) are converted to appropriate Java objects - like

Java.lang.String or java.sql.Timestamp - and assigned to the Attribute. If you take a look in

the TDI Javadocs, you will see that the Attribute object provides a number of useful methods,

like getValue(), addValue() and size(). This allows you to create, enumerate and manipulate

the values of an Attribute directly from script. You can also instantiate new Attribute objects

as needed, as show in this example for advanced mapping the objectClass attribute of a

directory:

var oc = system.newAttribute("objectClass");

oc.addValue("top");

oc.addValue("person");

oc.addValue("organizationalPerson");

oc.addValue("inetOrgPerson");

ret.value = oc;

TDI provides some shortcuts and convenience features when working in JavaScript, so the

above specific advanced mapping can be simply coded as follows:

ret.value = ["top", "person", "organizationalPerson", "inetOrgPerson"];

Chapter 2. IBM Tivoli Directory Integrator concepts 55

http://java.sun.com/j2se/1.5.0/docs/api/index.html
http://java.sun.com/j2se/1.5.0/docs/index.html

Since the advanced mapping feature supports JavaScript arrays for passing multiple attribute

values.

Attributes themselves are collected in a data storage object called an Entry object. The Entry is

the primary data carrier object in the system and TDI gives you access to important Entry

objects by registering them as script variables. A prime example is the Work Entry object in the

AssemblyLine, used to pass data between AL components (as well as between

AssemblyLines). This Entry object is local to each AssemblyLine and available as the script

variable work.

Looking at the Javadocs, you will see that the Entry object offers various functions for

working with Entries and their Attributes and values, including getAttributeNames(),

getAttribute() and addAttribute(). If we wanted to create and add an Attribute to the

AssemblyLine Work Entry, we could use the following script (for example, in a Hook or a

Script Component):

var oc = system.newAttribute("objectClass");

oc.addValue("top");

oc.addValue("organizationalUnit")

work.addAttribute(oc);

Note that in this case we do not have the option of using a JavaScript array to set the value:

oc.addValue(["top", "organizationalUnit"]); // Does not work like Advanced Mapping

This code will result in the oc attribute getting a single value, which in turn is an array of

strings.

Entry objects can also contain properties. Properties are data containers like Attributes, except

that they are only single valued. While Attributes are used to store data content, properties

hold parametric information, allowing you to keep this information separated. Properties do

not show up for Attribute Map selection or in the Work Entry list, but can be accessed much

like Attributes from script. Entry functions like getProperty() and setProperty() are used for

this, and these work directly with Property values (which can be any type of Java Object, just

like Attribute values). There is no intermediate Property object as there is when we work with

Attributes.

So this is how the TDI internal data model looks: An Entry containing zero or more

Attributes, each with zero or more values; a flat schema.

This is one of the strengths of TDI: simplifying and harmonizing data representations and

schema. It also represents a challenge when you need to handle information with more a

complex structure. However, since an Attribute value can be any type of Java object, including

another Entry object (with its own Attributes and values), TDI allows you work with

hierarchically structured data. The TDI CE visually supports only a flat schema, so you must

deal with the hierarchy yourself. For example, if you are reading in a complex XML

56 IBM Tivoli Directory Integrator 6.1: Users Guide

document, you could either ″flatten″ the data before input (e.g. via XSLT), or you could read

the document and then work directly with the resulting Document Object Model tree in your

script.

The Script Component

Ae Script component (SC) is a user-defined Hook that you can drop any place in the

AssemblyLine DataFlow list, alongside your Connectors and Function Components, causing

the script code within to be executed for each cycle at this point in the AL workflow. Unlike

Hooks, Script Components are easily moved around in the AssemblyLine flow, making them

very powerful tools for everything from debugging to prototyping and implementing your

own flow logic.

For example, if you want to test and debug only part of an AssemblyLine, you could put the

following code in an SC to limit and control AL flow.

task.dumpEntry(work);

system.skipEntry();

This SC will then display the contents of the work object (dumping it to log output) and then

skip the rest of the AL for this cycle. By moving the SC up and down the component list, you

control how much of the AL is actually executed. If you swap out the system.skipEntry() call

with system.skipTo("ALComponentName") you directly pass control to a specific AL

Component.

You can also use SCs to drive other Components. A typical scenario when doing directory or

database synchronization is having to handle both updated and deleted information. Since

Connectors powered by the built-in AL workflow can only operate in one Mode at a time

(Update or Delete) you will need to extend this logic a bit with your own code. One method

is to add two Connectors, one in Update mode and one set to Delete, and then put code in

each Connector’s Before Execute Hook to tell it to skip change operations that it should not

handle. For example, in the Update Connector’s Before Execute Hook you would write

something like this:

// The LDAP changelog contains an attribute called "changeType"

if (work.getString("changeType").equals("delete"))

 system.ignoreEntry();

This will cause your Update mode Connector to skip deleted Entries. You would have

complementary code in the Before Execute Hook of your Delete mode Connector, skipping

everything but deletes.

However, if you are synchronizing updates to multiple targets, this would require you to have

two Connectors per data source. Another approach is to have a single Connector in Passive

state that you power from script. As an example, let’s say you have a Passive AL Connector

called synchIDS. You can then add an SC with the following code to drive it6:

6. Since Passive Connectors are not powered by the AL logic, it does not matter where they appear in the DataFlow

list.

Chapter 2. IBM Tivoli Directory Integrator concepts 57

if (work.getString("changeType").equals("delete"))

 synchIDS.deleteEntry(work)

else

 synchIDS.update(work);

As long as you label your SC clearly, indicating that it is powering Passive Connectors, this

approach will result in shorter AssemblyLines that will be easier to read and maintain. This is

an example of having to choose between two best practices: keeping the AL short, and using

built-in logic versus custom script. However, in this case the goals of legibility and simplicity

are best served by writing a little script.

The Script Component also comes in handy when you want to test logic and script code. Just

create an AssemblyLine with a single Script Component in the DataFlow list, put in your code

and run it.

Java + Script != JavaScript

JavaScript is not Java. It may look like Java, but it is actually just close enough to really cause

confusion. JavaScript was originally called Live!Script back when Netscape first created it.

Although there is broad support for JavaScript, you will learn that dialects exist: for example

Microsoft’s version, called JScript. There is a standard definition which is known as

ECMAScript and you can find its specification at this URL:

http://www.ecma-international.org/

Although the syntax is similar, Java and JavaScript deal with data and data types differently.

This is one of the main sources of errors when working with JavaScript.

Data Representation: Java supports something called primitives, which are simple values like

signed integers, decimal values and single bytes. Primitives do not provide any functionality;

only non-complex data content. You can use them in computations and expressions, assign

them to variables and pass them around in function calls. Java also provides a wealth of

objects which not only carry data content (even highly complex data), but also provide

intelligence in the form of object functions, also known as methods.

When you make the script call to task.logmsg("Hello, World"), you are calling the task

object’s logmsg() method.

Many Java primitives have corresponding objects. One example is integers, which can used in

their primitive form (int) or via manipulation of java.lang.Integer objects.

JavaScript does not understand the concept of primitives. Instead, all data is represented as

JavaScript objects. Furthermore, JavaScript has only a handful of native objects as compared to

Java’s rich data vocabulary. So while Java differentiates between non-fractional numeric

objects and their decimal counterparts – even distinguishing between signed and unsigned

types, as well as offering similar objects for different levels of precision – JavaScript lumps all

numeric values into a single object type called a Number.

58 IBM Tivoli Directory Integrator 6.1: Users Guide

http://www.ecma-international.org/

As a result, you can get seemingly erroneous results when comparing numeric values in

JavaScript:

if (myVal == 3) {

 // do something here if myVal equals 3

}

If myVal was set by an arithmetic operation, or references a Java decimal object, the object’s

value could be 3.00001 or 2.99999. Although this is very close to 3, it will not pass the above

equivalency test. To avoid this particular problem, you can convert the operand to a Java

Integer object to ensure a signed, non-fractional value. Then your Boolean expression will

behave as expected.

if (java.lang.Integer(myVal) == 3) { ...

Or you can make sure that your variables reference appropriate Java objects to begin with. In

general, you will want to be conscious of the types of objects you are using.

Ambiguous Function Calls: Java also provides a primitive type called a char, which can

contain a single character value. A collection of characters could be represented in Java as an

array of character primitives, or it could be handled as a java.lang.String object. As mentioned

before, JavaScript does not savvy primitives. Character data must be dealt with using the

JavaScript String object. Even if you specify a single character in JavaScript (″a″), this is

considered a String.

Now consider that when you call a Java function from your script, this is matched up to the

actual method using the name of the function as well as the number and types of the

parameters used in the call. This matching is carried out by the LiveConnect extension to

JavaScript. LiveConnect does its best to figure out which function signature you are referring

to, which is no small task given that Java and JavaScript represent parameter types in

different ways. But JavaScript and LiveConnect do some behind-the-scenes conversions for

you, trying to match up Java and JavaScript data types.

A problem arises when you have multiple versions of a single method, each taking a different

set of parameters. In particular, if two functions have the same number of parameters, but of

different types, AND if these types are not differentiated in JavaScript. Let’s take a look at an

example script that will be performing an MD5 encryption of a string.

// Create MessageDigest object for MD5 hash

var md = new java.security.MessageDigest.getInstance("MD5");

// Get the EID attribute value as byte array.

var ab = java.lang.String("message to encrypt").getBytes();

md.update(ab);

var retHash = md.digest();

The above update() call will fail with an evaluation exception stating that the function call is

ambiguous. This is because the MessageDigest object has a multiple versions of this function

Chapter 2. IBM Tivoli Directory Integrator concepts 59

with similar signatures: one accepting a single byte and one expecting a byte array (byte[]).

We can get around this if we can find another variant of the same method taking a different

number of parameters, thus giving it a uniquely identifiable signature. Fortunately,

MessageDigest has what we are looking for: a version of update() that takes a byte array plus

a couple of numeric values (offset and length parameters). So we can change our code to use

this call instead:

md.update(ab, 0, ab.length);

Finally, you can always specify the exact signature of the Java method you want to use by

quoting it inside brackets after the object:

md["update(byte[])"](ab);

Here we are calling for the version of the update() function declared with a single byte array

parameter.

Char/String data in Java vs. JavaScript Strings: Both Java and JavaScript provide a String

object. Although these two types of String objects behave in a similar fashion and offer a

number of analogous functions, they differ in significant ways. For example, each object type

provides a different mechanism for returning the length of a string. With Java Strings you use

the length() method. JavaScript Strings on the other hand have a length variable.

var jStr_1 = new java.lang.String("Hello, World"); // Java String

task.logmsg("the length of jStr_1 is " + jStr_1.length());

var jsStr_A = "Hello, World"; // JavaScript String

task.logmsg("the length of jsStr_A is " + jsStr_A.length);

This subtle difference can lead to baffling syntax errors. Trying to call jsStr_A.length() will

result in a runtime error, since this object has no length() method.

Even more confounding mistakes can occur with string comparisons.

var jsStr_A = "Hello, World"; // JavaScript String

var jsStr_B = "Hello, World"; // JavaScript String

if (jsStr_A == jsStr_B)

 task.logmsg("TRUE")

else

 task.logmsg("FALSE");

As expected, you will get a result of ″TRUE″ from the above snippet. However, things work a

little differently with Java Strings.

var jStr_1 = java.lang.String("Hello, World"); // Java String

var jStr_2 = java.lang.String("Hello, World"); // Java String

if (jStr_1 == jStr_2)

 task.logmsg("TRUE")

else

 task.logmsg("FALSE");

60 IBM Tivoli Directory Integrator 6.1: Users Guide

This will result in ″FALSE″, since the equivalency operator above will be comparing to see if

both variables reference the same object in memory, instead of matching their values. To

compare Java String values, you must use the appropriate String method:

if (jStr_1.equals(jStr_2)) ...

But wait, there’s more. This next snippet of code will get you a result of ″TRUE″:

var jsStr_A = "Hello, World"; // JavaScript String

var jStr_1 = java.lang.String("Hello, World"); // Java String

if (jsStr_A == jStr_1)

 task.logmsg("TRUE")

else

 task.logmsg("FALSE");

Since JavaScript cannot operate on an unknown type like a Java String object, it first converts

jStr_1 to an equivalent JavaScript String in order to perform the evaluation.

In summary, be aware of the types of objects you are working with. And remember that TDI

functions always return Java Objects. Keeping these factors in mind will help minimize errors

in your script code.

Variable scope and naming: JavaScript is a relatively informal language and does not require

you to define variables before assigning values to them. Neither does it enforce strict type

checking, or complain when a variable is redefined. This makes JavaScript fast and easy to

work with, but can quickly lead to illegible code and confounding errors. Especially since you

can create variables that overwrite built-in.

One bug that can defy debugging is when you declare a variable with the same name as a

built-in one, like work, conn and current, so you will need to familiarize yourself with the

reserved names used by TDI.

Another common problem occurs when you create new variables that redefine existing ones,

perhaps used in included Configs or Script Libraries. These mistakes can be avoided if you

are conscious about the naming of variables and their scope. Scope defines the sphere of

influence of a variable, and in TDI we talk about globally scoped variables — those which are

available in all Hooks, Script Components and Attribute Maps — and those that are scoped

locally to a function.

To get a better understanding of scope you must first understand that every AL has its own

Script Engine, and therefore runs in its own script context. Any variable not specifically

defined as locally scoped inside a function declaration is global for that Script Engine. So the

following code will create a global variable:

myVar = "Know thyself";

This variable will be available from this point on for the life the AL. Making this variable

local requires two steps: using the var keyword when declaring the variable; and putting the

declaration inside a function:

Chapter 2. IBM Tivoli Directory Integrator concepts 61

function myFunc() {

 var myVar = "Know thyself";

}

Now myVar as defined above will cease to exist after the closing curly brace. Note that placing

the variable inside a function is not enough; you have to use var as well to indicate that you

are declaring a new, locally scoped variable.

var glbVar = "This variable has global scope";

glbVar2 = "Another global variable";

function myFunc() {

 var lclVar = "Locally scoped within this block";

 glbVar3 = "This is global, since "var" was not used";

};

As long as you locally scope a variable within a function then you can call it what you like.

As soon as it goes out of scope, any previous type and value are restored

Even though the var keyword is not required for defining global variables, it is best practice

to do so. And it is recommended that you define your variables at the top of your script,

including enough comments give the reader an understanding of what they will be used for.

This approach not only improves the legibility of your code, it also forces you to make

conscious decisions about variable naming and scope7.

Accessing your own Java classes

You can access your own Java classes from inside the IBM Tivoli Directory Integrator

framework as long as the these are public classes and methods. These libraries must be

packaged into a .jar or .zip file, and then be placed in the IBM Tivoli Directory Integrator jars

directory, preferably in your own sub-directory. You can also use the CLASSPATH

environment variable or the Java runtime environment extension folder, but both these

methods are discouraged. These methods let you call IBM Tivoli Directory Integrator classes

from within your own classes only if the loader happens to load the IBM Tivoli Directory

Integrator classes before your own.

If you are running the Server from the Config Editor, you must restart the Config Editor

before it knows about new classes in the jars directory and subdirectories.

After putting the jar-files in the jars subdirectory, you can create an instance of the class to

refer to within the IBM Tivoli Directory Integrator. Note that the Java FC allows you to open

jar files, browse objects contained as well as their methods. Once you have chosen the

function to call, the FC prepares your Input and Output schema to match the parameters

needed by the Java function.

7. Function naming works a little differently. Programming languages like Java identify a function by the combination

of its name plus the number and types of parameters. JavaScript just uses the name. So if you have multiple

definitions of the same function, JavaScript will only ″remember″ that last one — regardless of whether this

definition has a different number of parameters.

62 IBM Tivoli Directory Integrator 6.1: Users Guide

Instantiating the classes using the Config Editor

Use the Java library folder of the Config Browser to declare your classes. This works only if

your class has a no-argument constructor (usually but not always the default constructor).

When adding a class object simply click the Add button and specify two parameters: the

script object name (the name of the scripting variable which is an instance of your java class),

and the java class name. For example, you can have a Script Object Name mycls while the

Java Class might be my.java.classname. The mycls object will available for any

AssemblyLines, defined already before the Global Prologs execute.

Note:

Note that this causes your object to be instantiated for every AssemblyLine run. If this

is not desirable, and if you prefer to instantiate on demand, then see the next section.

Runtime instantiation of the classes

If you want to instantiate your class at a specific point of execution or for the classes without

no-argument constructors, you need to instantiate the class during runtime. For example:

crytoLib = new com.acme.myCryptoLib();

Scripting in JavaScript

Using instantiating a Java class

Assuming you want to use the standard java.io.FileReader, use the following script:

var javafile = new java.io.FileReader("myfile");

The same technique is used to instantiate your own objects:

var myfile = new my.FileReader("myfile");

Using binary values in scripting

Binary values can retrieved from Attributes by using the Entry's getObject() function. The

binary Attribute value itself is returned as a byte array. Here is a JavaScript example:

var x = conn.getObject("objectGUID");

for (i = 0; i < x.length; i++)

{

 task.logmsg ("GUID[" + i + "]: " + x[i]);

}

This example writes some numbers varying between -128 and 127 into the logfile. You might

want to do something else with your data. If you have read a password from a Connector

which stored it as a ByteArray, you can convert it to a string with this code:

password = system.arrayToString(conn.getObject("userpassword"));

Using date values in scripting

When we talk about using dates, we are referring to instances of java.util.Date. Armed with

any of the available scripting languages, you can implement your own mechanism for

handling dates. This is not a common practice.

Chapter 2. IBM Tivoli Directory Integrator concepts 63

The IBM Tivoli Directory Integrator scripting engine provides you with a mechanism for

parsing dates. The system object has a parseDate(date, format) method accessible at any time.

Note: When you get an instance of java.util.Date, you can use the standard java libraries and

classes to extend your processing.

Here is a simple JavaScript example that handles dates. This code can be placed and started

from any scripting control point:

var string_date1 = "07.09.1978";

var date1 = system.parseDate(string_date1, "dd.MM.yyyy");

var string_date2 = "1977.02.01";

var date2 = system.parseDate(string_date2, "yyyy.dd.MM");

task.logmsg(date1 + " is before " + date2 + ": " +

 date1.before(date2));

The script code first parses two date values (in different formats) into java.util.Date. It then

uses the standard java.util.Date .before() method to determine whether the first date instance

comes before the second one. The output of this script is then printed to the log file.

Using floating point values in scripting

The following examples demonstrate how floating point values can be used within the

scripting code you create. All of the following examples are implemented in JavaScript. While

the same examples might be repeated using several other scripting languages, the syntax

might be different. The following simple script assigns floating point values to two variables

in order to find their average. This code can be started from any scripting control point. The

log file output is " r = 3.85 ".

var a = 5.5;

var b = 2.2;

var r = (a + b) / 2;

task.logmsg("r = " + r);

The next example extends this simple script. Consider that in your input Connector is a

multiple values attribute called ″Marks″ containing string values (java.lang.String)

representing floating point values (a common situation). This attribute is mapped to an

attribute in your output Connector called ″AverageMark″, which holds the average value of

the ″Marks″ attribute’s values. The following is the code used in the Advanced Mapping of

the ″AverageMark″ attribute:

// First return the values of the "Marks" attribute

var values = work.getAttribute("Marks").getValues();

// Zero out counter and sum variables

var sum = 0;

var count = 0;

// Loop through the values, counting and summing them

for (i=0; i<values.length; i++)

{

64 IBM Tivoli Directory Integrator 6.1: Users Guide

// use the Double() function to convert value to number

 sum = sum + new Number(java.lang.Double(values[i]));

 count++;

}

// If count > 0, compute the average

var average = (count > 0) ? (sum / count) : 0;

// Return the computed average

ret.value = average;

The central call in this example is the java.lang.Double(values[i]) used to convert the

currently indexed value of ″Marks″ into a numeric value that can then be used in the average

computation.

Examples

Go to the examples/scripting subdirectory of your IBM Tivoli Directory Integrator installation.

Hooks

Those IBM Tivoli Directory Integrator objects that provide built-in workflows, such as

AssemblyLines, Connectors and Functions, also offer Hooks throughout these flows that

enable you to extend, change or completely override the automated behavior. Hooks enable

you to customize the behavior of your integration solution to an arbitrary depth, including

behaviors such as:

1. Override the basic data access for a Connector (see “Override Hooks” on page 66).

2. Respond to errors received from data sources. For example, an Iterator Connector has an

Iterator Error hook that can be programmed to log or send mail about input errors.

3. Modify the flow of an AssemblyLine (such as skipping a Connector, or restarting the

cycle).

Hooks are usually called in the AssemblyLine process as part of the flow control. If for some

reason you want to call a hook, use the following JavaScript command:

myConnector.trigger("hookName");

where myConnector is the name you gave your Connector and hookName is the internal name

of the Hook. The internal name of the hook is not to be confused with the name of the hook

as seen in the Config Editor.

There is a special variable called thisConnector which is available in Connector Hooks, and

which is always a reference to the current Connector. This facilitates the use of generic scripts,

because you do not need to know the name of the Connector.

Chapter 2. IBM Tivoli Directory Integrator concepts 65

Enabling or disabling Hooks

By default, all Hooks are disabled. As soon as you add some code to a particular Hook, the

Config Editor marks that Hook as enabled. If you do not want a Hook to be used, you can

uncheck the Enabled flag for that Hook. This enables you to keep the code in your Hook in

case you later want to use the code again.

A Hook is enabled if it is marked as enabled, even if it contains no code. This can be

important in error hooks, where IBM Tivoli Directory Integrator can treat the error as handled

based on the mere presence of an enabled hook. Enabled (and not inherited) Hooks

containing code have their name in black boldface.

Hooks can be inherited from the parent component that they appear in, and in this case the

Hook will be listed in blue cursive text.

Note that if you edit an inherited Hook, the script code becomes a local copy that overrides

the inherited logic. To restore inheritance you need to select the Hook and click Delete Hook

button at the top of the Hooks list.

Override Hooks

For every Connector mode there is a mode-specific Override Hook. If this Hook is enabled,

first the Before Execute Hook is called (if it is enabled), and then the Override mode-specific

operation Hook, before the flow control continues with the next Connector in the

AssemblyLine. No other Hooks are called, except Error Hooks if necessary.

For a Connector in Update mode, there are also Override Add and Override Modify Hooks.

After the Connector has decided whether it performs a Modify or Add operation (based on

whether there already exists a matching Entry in the data source), the appropriate Hook is

called if it is enabled. After the Hook has finished, the flow control continues to the After

Update and Update Successful Hooks.

Error Hooks

Error Hooks enable you to respond to errors generated by data sources, the operating system

and the IBM Tivoli Directory Integrator For example, an Iterator has an Iterator Error Hook

that is invoked if an error occurs during Iterator operation (e.g. reading the next Entry). Refer

to ″TDI Hook Flow diagrams″ in IBM Tivoli Directory Integrator 6.1: Reference Guide to see

when (and which) error Hooks are called.

In an Error Hook, you typically want to check the error Entry object to see what caused the

process to pass through the Error Hook. The error object is an object of type Entry (just like

work and conn) and it contains a number of attributes that describe the error. These include

the following error attributes:

status The error status (for example, fail).

connectorname

Contains the name of the Connector where the error occurred.

66 IBM Tivoli Directory Integrator 6.1: Users Guide

operation

The internal name of the operation that was being performed.

exception

The full exception text.

message

The error message.

class The type of error (exception), which often gives you a clue as to which system

originated the error.

When a failure occurs in a Connector, the following happens:

1. The error counter is increased by one.

2. The On Error Hook specific to the mode of the Connector is called (Connector_mode

Error).

3. If that Hook is not enabled, the Connector’s Default On Error Hook is called.

4. If no Hook is enabled to catch the error, the AssemblyLine is terminated and the error is

displayed in the log.

5. If the error Hook is enabled, then AssemblyLine continues with the next Connector. If you

want another behavior, you must program it in the Hook with one of the methods

described in “The AssemblyLine” on page 4.

List of Hooks

Connectors

These Hooks are common for all Connectors. See ″AssemblyLine and Connector mode

flowcharts″ in IBM Tivoli Directory Integrator 6.1: Reference Guide to see the when Hooks are

invoked.

Prolog - Before Initialize (before_initialize)

Called before initialization of the Connector is attempted.

Prolog - After Initialize (after_initialize)

Called after the Connector has been initialized.

Prolog - On Error (initialize_fail)

Called when the Connector initialization fails. If no Hook is enabled to catch the error,

the AssemblyLine aborts. If a Hook is enabled, it must take the proper action, which

might be to abort the AssemblyLine.

Prolog - On Connection Error (connect_init)

Called when the Connector initialization fails and before auto-reconnect functionality

engages (if this feature is enabled for initialization).

Before Execute (before_execute)

Called before every Connector start.

Default On Success (default_ok)

Called when a Connector operation succeeds, after mode-specific success Hooks.

Chapter 2. IBM Tivoli Directory Integrator concepts 67

Default On Error (default_fail)

Called when an error occurs during a Connector operation, unless the mode-specific

fail Hook is enabled, in which case the mode-specific Hook is invoked first.

DataFlow On Connection Error(on_connection_failure)

Called when a Connector operation fails and before auto-reconnect functionality

engages (if this feature is enabled for Dataflow operation).

Epilog - Before Close (before_close)

Called before the Connector is closed.

Epilog - After Close (after_close)

Called after the Connector is closed.

Epilog - On Error (close_fail)

Called when the Connector fails to close after the AssemblyLine has finished.

 These Hooks are available for Connectors in Iterator mode:

Prolog - Before Selection (before_selectEntries)

Called before the Connector selects entries as part of the initialization.

Prolog - After Selection (after_selectEntries)

Called after the Connector has selected entries in the initialization.

Override GetNext (override_getnext)

This Hook enables you to override the mode-specific operation and Hook flow.

Iterator - Before GetNext (before_getnext)

Called before the Connector attempts to get the next item.

Iterator - After GetNext (after_getnext)

Called after a GetNext is successfully performed on the Connector, but before

attribute mapping is done. The conn Entry object is available for inspecting or

changing the attributes retrieved from the Connector.

GetNext Successful (get_ok)

This is the mode-specific success Hook for Iterator mode, called before Default

Success.

Iterator Error (get_fail)

This is the mode-specific error Hook for Iterator mode, called before Default On

Error.

End of Data

This Hook is called when the Connector reaches the end of the data it has been

iterating through.

 These Hooks are available for Connectors in AddOnly mode:

Override Add (override_add)

This Hook enables you to override the mode-specific operation and Hook flow.

68 IBM Tivoli Directory Integrator 6.1: Users Guide

AddOnly - Before Add (before_add)

Called before an add operation is attempted.

Note: This Hook is shared between AddOnly and Update modes.

AddOnly - After Add (after_add)

Called after an entry was successfully added.

Note: This Hook is shared between AddOnly and Update modes.

Add Successful (add_ok)

This is the mode-specific success Hook for Add mode, called before Default Success.

AddOnly Error (add_fail)

This the mode-specific error Hook for Add mode, called before Default On Error.

 These Hooks are available for Connectors in Delete mode:

Override Delete (override_delete)

This Hook enables you to override the mode-specific operation and Hook flow.

Delete - Before Lookup (before_lookup)

Called before initial lookup is attempted.

Note: This Hook is common between all the modes that perform a lookup: Lookup,

Delete and Update.

Delete - On No Match (delete_nomatch)

When no entry matches the Link Criteria, the Connector calls this Hook if it is

enabled, otherwise the On Error Hooks are called.

Delete - After Lookup (after_lookup)

Called after an entry is found, but before attribute mapping is done. The conn Entry

object is available for inspecting or changing the attributes retrieved from the

Connector.

Note: This Hook is shared between Lookup, Delete and Update modes.

Delete - On Multiple Entries (delete_multiple)

When more than one entry matches the Link Criteria, the Connector calls this Hook if

it is enabled, otherwise the On Error Hooks are called. See ″AssemblyLine and

Connector mode flowcharts″ in IBM Tivoli Directory Integrator 6.1: Reference Guide for a

description on how to select a particular entry in order to continue with the operation.

Delete - Before Delete (before_delete)

Called before delete is attempted. At this point, the conn Entry object is available for

inspecting or changing the attributes retrieved from the Connector by the initial

lookup. That is why Delete mode is in Input Map.

Delete - After Delete (after_delete)

Called after an entry was deleted.

Chapter 2. IBM Tivoli Directory Integrator concepts 69

Delete Successful (delete_ok)

This is the mode-specific success Hook for Delete mode, called before Default

Success.

Delete Error (delete_fail)

This the mode-specific error Hook for Delete mode, called before Default On Error.

 These Hooks are available for Connectors in Lookup mode:

Override Lookup (override_lookup)

This Hook enables you to override the mode-specific operation and Hook flow.

Lookup - Before Lookup (before_lookup)

Called before lookup is attempted.

Note: This Hook is common between all the modes that perform a lookup: Lookup,

Delete and Update.

Lookup - On No Match (lookup_nomatch)

When no entry matches the Link Criteria, the Connector calls this Hook if it is

enabled, otherwise the On Error Hook is called.

Lookup - On Multiple Entries (lookup_multiple)

When more than one entry matches the Link Criteria, the Connector calls this Hook if

it is enabled, otherwise the On Error Hook are called. See ″AssemblyLine and

Connector mode flowcharts″ in IBM Tivoli Directory Integrator 6.1: Reference Guide for a

description on how to select a particular entry in order to continue with the operation.

Lookup - After Lookup (after_lookup)

Called after an entry is found, but before attribute mapping is done. The conn Entry

object is available for inspecting or changing the attributes retrieved from the

Connector.

Note: This Hook is shared between Lookup, Delete and Update modes.

Lookup Successful (lookup_ok)

This is the mode-specific success Hook for Lookup mode, called before Default

Success.

Lookup Error (lookup_fail)

This is the mode-specific error Hook for Lookup mode, called before Default On

Error.

 These Hooks are available for Connectors in Update mode:

Before Update (before_update)

Called before the initial lookup is attempted (in order to determine whether to

perform an add or modify operation).

Update - Before Lookup (before_lookup)

Called before lookup is attempted.

70 IBM Tivoli Directory Integrator 6.1: Users Guide

Note: This Hook is common between all the modes that perform a lookup: Lookup,

Delete and Update.

Update - On Multiple Entries (update_multiple)

When more than one entry matches the Link Criteria, the Connector calls this Hook if

it is enabled, otherwise the On Error Hooks are called. See ″AssemblyLine and

Connector mode flowcharts″ in IBM Tivoli Directory Integrator 6.1: Reference Guide for a

description on how to select a particular entry in order to continue with the operation.

Update - After Lookup (after_lookup)

Called after an entry is found, but before attribute mapping is done. The conn Entry

object is available for inspecting or changing the attributes retrieved from the

Connector.

Note: This Hook is shared between Lookup, Delete and Update modes.

Update - On Modify - Override Modify (override_modify)

This Hook enables you to override the modify operation and Hook flow.

Update - On Modify - Before Modify (before_modify)

Called before a modify operation is attempted.

Update - On Modify - On Compute Changes - On No Changes (modify_nochange)

Called when an Update-mode Connector (with the Compute Changes flag set) reports

no changes to update.

Update - On Modify - On Compute Changes - Before Applying Changes (modify_apply)

Called immediately before a modification is performed. This Hook is called only

when the Compute Changes flag is set. If no changes are detected, the On No

Changes Hook is called instead.

Update - On Modify - After Modify (after_modify)

Called after an entry was modified.

Update - On Add - Override Add (override_add)

This Hook enables you to override the add operation and Hook flow.

Note: This Hook is shared between Update and AddOnly modes.

Update - On Add - Before Add (before_add)

Called before an add operation is attempted.

Note: This Hook is shared between Update and AddOnly modes.

Update - On Add - After Add (after_add)

Called after an entry was successfully added.

Note: This Hook is shared between Update and AddOnly modes.

Chapter 2. IBM Tivoli Directory Integrator concepts 71

Update - On Add - On No Add

This Hooks is called if the conn Entry is empty after the Output Map has completed.

After this Hook is called, nothing is added, and the Connector logs an ignore.

Update - On Add - After Update (after_update)

Called after successful update (add or modify).

Update - Update Successful (update_ok)

This is the mode-specific success Hook for Update mode, called before Default

Success.

Update Error (update_fail)

This is the mode-specific error Hook for Update mode, called before Default On

Error.

 These Hooks are available for Connectors in CallReply mode:

Override CallReply (override_callreply)

This Hook enables you to override the mode-specific operation and Hook flow.

CallReply - Before CallReply (before_call)

Called before the service or system call is made.

CallReply - After CallReply (after_reply)

After a reply has been received from the called service or system.

CallReply Succesfull (callreply_ok)

This is the mode-specific success Hook for CallReply mode, called before Default

Success.

CallReply Error (callreply_fail)

This is the mode-specific error Hook for CallReply mode, called before Default On

Error.

No Answer Returned

Invoked if no reply is received (based on timeout settings) after the call has been

made. Note that this is a mandatory Hook for CallReplymode.

 Connectors in Server mode have five sets of Hooks: Server, as well as two ″DataFlow″ sets

(Iterator and Reply), plus Prologs and Epilogs. Prologs and Epilogs are standard for all

modes, although they behave slightly different here. That leaves Server, DataFlow (Iterator)

and DataFlow (Reply), which represent the three different tasks carried out by this mode:

1. The Connector first acts as a ″Server″, listening on some resource (like an IP port) for

incoming client connections. When a connection arrives and is accepted, the Server mode

Connector clones itself in Iterator mode, attaches itself to the Flow section8 and feeds it the

8. You can define a pool of Flow sections that you want hot-and-ready to process incoming client data. This is done in

the Config tab of the AssemblyLine.

72 IBM Tivoli Directory Integrator 6.1: Users Guide

stream of data coming from the client. In other words, the Server mode Connector starts

iterating on the client data and driving AL cycles -- just like a typical AssemblyLine

works.

Server functionality is tied to the Server Hooks.

2. The Iterator cycles on the client data. Each time the Flow section completes, the Iterator

switches momentarily to Server Response.

The Prolog, DataFlow (Iterator) and Epilog Hooks are active when the Connector is in

Iterator mode.

3. Server Response sends a reply to the client, switches back to Iterator and resumes cycling

on client data.

Note that the Iterator Hooks are described here under that mode.

Before Accepting connection (before_getnextclient)

This Hook is called before the Connector goes into listening mode.

After Accepting connection (after_getnextclient)

Once a connection is received, this Hook is invoked. Note that the no data is available

at this time. In order to examine incoming event information, use the Iterator Hooks

like After GetNext or GetNext Successful.

Error on Accepting connection (getnextclient_fail)

This Hook is executed if an error occurs in any of the Server mode Hooks, or received

from the data source during event listening.

 As mentioned above, the Reply Hooks apply to Server Response behavior:

Before Execute

Called before any Server Response behavior begins. Note that this is not the same as

the Before Execute Hook in Iterator mode.

Override Reply

Enables you to implement your own Response logic.

Before Reply

Called before the Output Map and the actual call to the Connector Interface’s

replyEntry() method.

After Reply

Executed after the response has been made.

Reply Success

This Hook is invoked if the Server Response behavior (reply to the client) has

completed without unhandled errors.

Reply Error

Called if an error occurs during Server Response behavior (reply to the client), or in

any of the other Reply Hooks.

Chapter 2. IBM Tivoli Directory Integrator concepts 73

Function Components

These Hooks are common for all Function Components. The tables below are here to let you

know the internal name of hooks (if you want to use the trigger() method).

Prolog - Before Initialize (prologinit)

Code is executed just before the Function is initialized.

Prolog - After Initialize

This Hooks is executed after the Function initializes.

Prolog - On Error

Flow ends up in this Hook if an error occurs during the Function initialization phase.

Prolog - On Connection Error

As with Connectors, this Hooks is called if an exception matching the rules that

define connection-type errors.

Dataflow - Before Execute

This Hook is called during each AL cycle before any other action is taken by this

component.

Epilog -Before close

This Hooks is called just before the Function closes down.

Epilog - After close

Code is executed just after the Function has closed.

Epilog - On Error

Called if the Function encounters an error while closing.

AssemblyLines

These Hooks are common for all AssemblyLines, and are found in the Hooks tab of each

AssemblyLine. They are all executed only once per AssemblyLine run, unless you happen to

start your AssemblyLine multiple times (for example, by using an EventHandler).

Prolog - Before Init. (prologinit)

This Prolog is run before Connectors initialize, so it is a convenient spot for modifying

the Connector parameters. For example, if at runtime you know the filename to use in

a File Connector, you can pass this to the Connector with the following script:

myConnector.connector.setParam("filePath",myFileNameVariable);

Prolog (prolog)

Code started after all Connectors have initialized successfully. This is a good place to

declare global variables you need through the execution of the AssemblyLine (for

example, for counters, average values, and so forth).

On Start of Cycle

This Hook is invoked at the start of each AL cycle, the first time after all the Prolog

Hooks (and Connector initialization) have completed.

74 IBM Tivoli Directory Integrator 6.1: Users Guide

Note: If you get here not for the first time but after the AssemblyLine has at least

executed one cycle, the work entry is not yet reset at this point; it will still

reflect the state in which it was at the end of the previous cycle.

Dataflow

Note: This is not a hook.
Here the AssemblyLine drives its Connectors and Script Components. See

″AssemblyLine and Connector mode flowcharts″ and ″Script Connector″ in IBM Tivoli

Directory Integrator 6.1: Reference Guide.

Epilog (epilog)

Code is executed once for each run of the AssemblyLine before all Connectors

perform their close Hooks and operations.

Epilog - After close (epilog2)

Code is executed once for each run of the AssemblyLine after all Connectors have

finished their tasks. A common pattern is to release all resources allocated in the

Prolog section here and save.

On Success

Called if the AL completes without errors/exceptions (or at least, with any errors that

have not been dealt with by your solution).

On Failure

Called if the AL stops because of an error/exception. Note that this will not happen if

a Connector Error Hook catches the exception.

Shutdown Request (shutdown)

This Hook is started when the AssemblyLine has been instructed to stop (for example,

from the AMC Console, or from another server). This script enables you to add

clean-up code for terminating the AssemblyLine gracefully.

Note: If the AssemblyLine gets a shutdown request and this script is empty, then this

results in an error (although this error can be handled in the Epilogs).

Server Hooks

Server Hooks allow you to write JavaScript code to respond to events and errors that occur at

the server level. Unlike AssemblyLine and component Hooks, Server Hooks are stored in

separate script files. These files are kept in the serverhooks folder in the current solution

directory and must contain specifically named script functions.

In addition to these Hooks being called by the Server when specific events occur, they can

also be invoked from your scripts. Calls to these hooks are synchronized to avoid potential

multi-threading issues.

Upon startup, IBM Tivoli Directory Integrator loads and executes all user scripts in the

serverhooks subdirectory. Scripts may or may not contain function declarations. A script that

has no function declarations is executed once at startup before any configuration instances are

Chapter 2. IBM Tivoli Directory Integrator concepts 75

started. Code that defines standard TDI Server Hook functions are prefixed with “TDI_”., and

these are executed at various points during operation.

All TDI Server Hook functions have the following JavaScript signature:

/**

 * @param main The configuration instance invoking the function

 * @param source The component invoking the function

 * @param user Arbitrary parameter information from the source

 */

 function TDI_functionName(main, source, user) {

 }

The “main” and “source” parameters always provide access to the Config Instance and calling

component, respectively. The “user” parameter is used for different purposes in the various

Hook functions.

The following standard function names are invoked by various TDI components:

Function Name Called by (source)

User Parameter and Expected

Value

TDI_ALStarted Config Instance Called when an AssemblyLine is

started.

user = The AssemblyLine that

started

return value ignored

TDI_ALStopped Config Instance Called when an AssemblyLine

stopped.

user = The AssemblyLine that

stopped

return value ignored

TDI_ConfigStarted Server Called when a config instance

started.

user = The configuration instance

return value ignored

TDI_ConfigStopped Server Called after a config instanced

stopped.

user = The configuration instance

return value ignored

76 IBM Tivoli Directory Integrator 6.1: Users Guide

Function Name Called by (source)

User Parameter and Expected

Value

TDI_Shutdown Server/Config Instance Called immediately before the

TDI server is terminating the

JavaVM (e.g. System.exit()).

user = Exit status (integer)

return value ignored

To avoid threading issues, the invokeServerHook() is synchronized to prevent more than one

thread to execute a hook at a time. All calls are invoked synchronously so the caller will wait

for the function to return. Care should be taken not to spend too much time in a server hook.

Access to TDI Server Hook functions is provided through the main.invokeServerHook()

method. This function is synchronized to prevent more than one thread executing a hook at a

time. All calls are invoked synchronously so the caller will wait for the function to return. As

a result, care should be taken not to spend too much time in a server hook.

As mentioned previously, scripts are defined and made available by creating files in the

“serverhooks” subdirectory of the solution directory. Scripts that contain sensitive information

should be encrypted with the Server-API before adding it to the directory. The

serverapi/cryptoutils tool is available for encrypting script files. Note that TDI will

automatically try to decrypt an encrypted file.

Furthermore, the files in the serverhooks directory are loaded and executed after first sorting

the file names using case-sensitive sort with the standard collating sequence for the platform.

All files in the top-level directory are loaded before files in any subdirectories are processed.

Some examples Server Hook use are:

v A custom object that you always want loaded in TDI for use for your own scripting could

be instantiated from a JavaScript snippet hooked into the server hook “on TDI startup”.

This gives you more control than simply referring to the class under the Java Libraries

folder in the Config Browser.

v Starting one or more custom ALs that create an audit log for these events, and/or

propagate these events to other systems via some transport (SNMP, HTTP, JMS, etc.).

v Implement some corporate security policy that’s invoked every time a config is loaded or

AL started

Calling Server Hooks from script

The com.ibm.di.server.RS class (script variable “main”) has a method for invoking Server

Hooks:

/**

 * Invokes a server hook.

 *

 * @param name The name of the hook (also the filename)

Chapter 2. IBM Tivoli Directory Integrator concepts 77

* @param caller The object invoking the hook

 * @param userInfo Arbitrary information to the hook from the caller

 */

public Object invokeServerHook(

 String name,

 Object caller,

 Object userInfo) throws Exception;

This call can return a Java Object (any type), so even though TDI ignores this during Server

Hook execution, you can make use of returned values in your own scripted calls.

Deltas

Attention: The Delta mechanism must be avoided if you can. Not because it does not work,

but because it introduces a new local repository in order to manage the synchronization

process. The data source which is being scanned for changes becomes the master in a

master-slave relationship, and it is then vital that all changes made to the slave (for example,

the Delta store) be done such that the Delta mechanism is informed of them. Otherwise, the

temporary Delta database which the IBM Tivoli Directory Integrator maintains becomes

inconsistent, and the Delta function fails.

Whenever possible, enable the Compute Changes functionality (in the Update mode of the

Connector) instead of the Delta feature. This feature also limits writes made to the data

source.

Still, there might be times when your solution calls for reacting to changes in realtime.

However, IBM Tivoli Directory Integrator cannot detect changes in some data sources. Often

this because there is no support (or published interface) for change detection in the target

system or source (for example, a flat file). Or it might be that there is no Change Connector

available for this system. This is where the Delta feature can be used so that IBM Tivoli

Directory Integrator can determine which Entries are new, modified or deleted.

Note: You can configure Delta settings on Connectors in Iterator mode only.

The Delta mechanism knows whether Entries or Attributes have been added, changed or

deleted by keeping a local copy of each entry in a persistent store called a Delta Table, which

is part of the System Store. Each time the AssemblyLine is run, the Delta mechanism

compares the data being iterated with its copy in the Delta Table. You can configure the

Iterator’s Delta settings to control which types of changes you want passed into the

AssemblyLine. All other changes are ignored.

Unique attribute

In order for the Delta mechanism to be able to uniquely identify each entry, you must specify

a unique attribute to use as the Delta key. This is done in the Connector’s Delta tab by

entering (or selecting) an attribute name in the Unique Attribute Name parameter. This

attribute must be found in the Input Map of your Iterator, and can either be an attribute read

from the connected system or a computed attribute (Advanced Attribute Map). Each attribute

78 IBM Tivoli Directory Integrator 6.1: Users Guide

must have a value that can be represented as a string (that is, it must implement the

toString() function), and the resulting string value cannot be null or blank. If a designated

unique attribute has more than one value, then an error is thrown.

You can also specify multiple attributes by separating them with a plus sign (+):

LastName+FirstName+BirthDate

At least one of the attributes specified as a unique attribute must contain a value. When

several attributes are specified, their string values are concatenated into one string, which then

becomes the unique Delta identifier. Attributes with no values (for example, null) are skipped

when the Delta key is built for an entry.

Delta flags

The Delta feature enables you to control how entries are returned in the AssemblyLine. If an

entry is not returned as a result of one of the flag settings, the Delta function silently skips the

entry and continues with the next entry from the Connector. A skipped entry is always

updated in the Delta Store. See “Delta Store” on page 85.

Return Unchanged

If flag is TRUE then unchanged entries are returned to the AssemblyLine.

Return Added

If flag is TRUE then new entries are returned to the AssemblyLine.

Return Deleted

If flag is TRUE then deleted entries are returned to the AssemblyLine. Deleted entries

are returned when iteration of the data source has completed successfully. The Delta

mechanism then runs through the Delta Table to see if any where not handled during

the iteration. These are considered to be deleted from the input data source.

Return Modified

If flag is TRUE then modified entries are returned.

Currently, only the LDAP Connector can handle incremental modifications automatically,

using its Delta mode. However, you can add this functionality to your solution with other

Connectors by examining the operation codes listed above and driving the modify operation

from script.

Deltas and compute changes

Computing changes from a data source is a straightforward process. When comparing two

entries (the entry read from the data source and the Delta copy), the returned entry has an

operation code set to add, modify or delete. You can then control the behavior of your

AssemblyLine Connectors based on this operation code.

For example, suppose you want your AssemblyLine to handle all three types of operations.

One way to build this solution is to use two Connectors configured to work with the same

target system. Set one to Delete mode and the other to Update. In the Before Execute Hook

of the Update Connector, add the following code:

Chapter 2. IBM Tivoli Directory Integrator concepts 79

if (work.getOperation() == "delete")

 system.ignoreEntry();

This causes the Update Connector to skip over all work Entries marked for delete by the

Delta feature. In the Before Execute Hook of the Delete Connector you put the reciprocal

code:

if (!work.getOperation() == "delete")

 system.ignoreEntry();

Now the Delete Connector ignores all work Entries not tagged for delete.

Another way to implement this same functionality is to have a single Connector in Update or

Delete mode. The actual mode of the Connector is not important, because you use script to

drive it. The Connector must be set to Passive state, so it is initialized, but not operated by

the AssemblyLine. Then you add a Script Component to your AssemblyLine with the

following script (this example assumes your Connector is called myTargetConnector):

if (work.getOperation() == "delete")

 myTargetConnector.deleteEntry(work)

else

 myTargetConnector.update(work);

Both methods perform the same actions, including invoking all the relevant Connector Hooks.

Computed Changes

This is a additional change-control feature available for Connectors in Update mode (using a

checkbox in the Connector Detail pane). Compute Changes is used to make the Connector

check that the existing record in the connected system is actually different from the one about

to be written before actually performing the modify operation. Description of how this option

is used can be found in “Connectors” on page 19, in Update mode.

Examples

Go to the root_directory/examples/deltas directory of your IBM Tivoli Directory Integrator

installation.

Delta process

The process of computing changes in a data source involves the use of a local store in which

the Delta process stores information about each entry read from a Connector. Each time the

delta process is run, a sequence counter increments. Each entry read from the Connector is

stored in a Delta table along with the current sequence number. The purpose of the sequence

number is to be able to detect entries no longer part of the source data set. This is

accomplished by comparing the sequence numbers after a completed iteration over the source

data set. For more information about Delta storage, see “Delta Store” on page 85.

Delete Entry

After a completed iteration of the data source, any entries in the Delta Table with a sequence

number lower than the current sequence number is considered to be a deleted entry. This is

true only if the iteration completes successfully.

80 IBM Tivoli Directory Integrator 6.1: Users Guide

Modify Entry

When an entry is read from the Connector, the delta process looks up its corresponding entry

in the Delta Table using the unique attribute’s value. If a match is found, the Delta process

compares each attribute (and each attribute’s values) to determine if there have been

modifications to the entry.

Add Entry

If a match is not found in the Delta Table, the entry is added to the Delta Table and treated as

a new entry.

Unchanged Entry

If an entry from the Connector matches an entry in the Delta Table, the entry is treated as an

unchanged entry.

Delta Table structures

The tables used by the Delta store consist of the Delta Systable (DS) that contains information

about each Delta Table currently in use in the delta store. The Delta Table (DT) contains

information about each entry that has been read and processed by the Delta function in a

Connector.

Delta Systable

The Delta Systable (DS) contains information about each Delta Table (DT) in the System Store

(CloudScape database). The purpose of the DS is to maintain the sequence counter for each

DT. The structure for the DS is as follows:

 Column Type Description

ID Varchar The DT identifier

SequenceID Int The sequence ID from the last

run

Version Int The DS version (1)

Delta Table

Each Connector that requests a Delta store needs to specify a unique Delta identifier to be

associated with the Connector. This identifier is also used as the name of the Delta Table in

the System Store. The Delta Table structure is as follows:

 Column Type Description

ID Varchar The unique value identifying an

entry

SequenceID Int The sequence number for the

entry

Version JavaObject The serialized Entry object

Chapter 2. IBM Tivoli Directory Integrator concepts 81

System Store

The System Store addresses the various needs of IBM Tivoli Directory Integrator for persistent

storage and by default uses the DB2Java (CloudScape) RDBMS as its underlying storage

technology. Other relational databases, like IBM DB2®, can be used to hold the System Store.

The System Store can be shared by multiple instances of IBM Tivoli Directory Integrator

servers if the CloudScape database runs in networked mode, or if a multi-user relational

database system is used. If CloudScape runs embedded in an IBM Tivoli Directory Integrator

server, it cannot be shared simultaneously with other servers.

The system store implements three types of persistent stores for IBM Tivoli Directory

Integrator components:

v The User Property Store

v The Delta Tables

v The Checkpoint/Restart Tables

Each store offers its own set of features and built-in behavior, as well as a callable interface

that users can access from their scripts, for example, to persist their own data and state

information.

Under the Window menu is a choice called System Store. Selecting this opens the System

Store window. Here you can change the name of the directory where CloudScape maintains

the System Store’s system database.

If you click the Open button, the System Store Browser displays three items, one for each type

of persistent store. You can use this window to examine the contents of the System Store.

Although you cannot change values directly from this screen, you can delete tables with the

Delete Table button. You can also set up a JDBC Connector to access any of these tables,

although changing data in these System Store tables must be avoided, as this can cause your

solution to malfunction.

 Attention: If you are running CloudScape embedded in IBM Tivoli Directory Integrator as

opposed to running it in networked mode as a server, then be sure to Close the database

again before trying to test or run your Config. Because the Config Editor starts up a separate

instance of the IBM Tivoli Directory Integrator Server, running in its own JVM, the System

Store is not available to this Server. Closing the System Store Details window also closes your

connection to the database.

Note: Although the Sandbox feature also uses the System Store technology, you specify a new

database directory for each AssemblyLine.

Configure RDBMS database servers as System Store

You can configure Oracle, MS SQL Server and DB2 servers as System Store databases. The

following sections contain the necessary configuration settings:

82 IBM Tivoli Directory Integrator 6.1: Users Guide

Oracle

JDBC connection parameters:

com.ibm.di.store.database=jdbc:oracle:thin:@itdidev.in.ibm.com:1521:itimdb

com.ibm.di.store.jdbc.driver=oracle.jdbc.OracleDriver

com.ibm.di.store.jdbc.urlprefix=jdbc:oracle:thin:

com.ibm.di.store.jdbc.user=SYSTEM

{protect}-com.ibm.di.store.jdbc.password=password

Create table statements:

com.ibm.di.store.create.delta.systable=CREATE TABLE {0} (ID VARCHAR2(VARCHAR_LENGTH)

 NOT NULL, SEQUENCEID int, VERSION int)

com.ibm.di.store.create.delta.store=CREATE TABLE {0} (ID VARCHAR2(VARCHAR_LENGTH)

 NOT NULL, SEQUENCEID int, ENTRY long raw)

com.ibm.di.store.create.property.store=CREATE TABLE {0} (ID VARCHAR2(VARCHAR_LENGTH)

 NOT NULL, ENTRY long raw)

com.ibm.di.store.create.checkpoint.store=CREATE TABLE {0} (ID VARCHAR2(VARCHAR_LENGTH)

 NOT NULL, ALSTATE long raw, ENTRY long raw,

 TCB long raw)

com.ibm.di.store.create.sandbox.store=CREATE TABLE {0} (ID VARCHAR2(VARCHAR_LENGTH)

MS SQL Server

JDBC connection parameters:

Location of the database (Microsoft SQL Server - normal)

com.ibm.di.store.database=jdbc:Microsoft:sqlserver://9.182.190.191:1433;

 DatabaseName=master;selectMethod=cursor;

com.ibm.di.store.jdbc.driver=com.microsoft.jdbc.sqlserver.SQLServerDriver

com.ibm.di.store.jdbc.user=sa

com.ibm.di.store.jdbc.password=sec002ret

The above connection parameters are used with Microsoft JDBC jars:

v Msutil.jar

v MsBase.jar

v MSsqlserver.jar

You must download these jar files and copy them into the <TDI_HOME>/jars directory.

JDBC connection params (For JSQLConnect driver):

com.ibm.di.store.database= jdbc:JSQLConnect://itdiderver/database=reqpro

com.ibm.di.store.jdbc.driver= com.jnetdirect.jsql.JSQLDriver

com.ibm.di.store.jdbc.urlprefix= jdbc:JSQLConnect:

com.ibm.di.store.jdbc.user=administrator

{protect}-com.ibm.di.store.jdbc.password=password

These connection parameters are used with JSQLConnect drivers. You must download the

JSQLConnect.jar file and copy it into the <TDI_HOME>/jars directory.

Chapter 2. IBM Tivoli Directory Integrator concepts 83

Create table statements:

com.ibm.di.store.create.delta.systable=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH)

 NOT NULL, SEQUENCEID int, VERSION int)

com.ibm.di.store.create.delta.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH)

 NOT NULL, SEQUENCEID int, ENTRY long varbinary)

com.ibm.di.store.create.property.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH)

 NOT NULL, ENTRY long varbinary)

com.ibm.di.store.create.checkpoint.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH)

 NOT NULL, ALSTATE long varbinary, ENTRY long varbinary, TCB long varbinary)

com.ibm.di.store.create.sandbox.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH)

 NOT NULL, ENTRY long varbinary)

DB2

JDBC connection parameters:

com.ibm.di.store.database=jdbc:db2:net://localhost:50000/ididb

com.ibm.di.store.jdbc.driver=com.ibm.db2.jcc.DB2Driver

com.ibm.di.store.jdbc.urlprefix= jdbc:db2:net:

com.ibm.di.store.jdbc.user=db2admin

{protect}-com.ibm.di.store.jdbc.password=db2admin

Where idib is the DSN for a DB2 instance.

Create table statements:

com.ibm.di.store.create.delta.systable=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH)

 NOT NULL, SEQUENCEID int, VERSION int)

com.ibm.di.store.create.delta.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH)

 NOT NULL, SEQUENCEID int, ENTRY BLOB)

com.ibm.di.store.create.property.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH)

 NOT NULL, ENTRY BLOB)

com.ibm.di.store.create.checkpoint.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH)

 NOT NULL, ALSTATE BLOB, ENTRY BLOB, TCB BLOB)

com.ibm.di.store.create.sandbox.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH)

 NOT NULL, ENTRY BLOB)

Note: You need to drop in db2java.zip in the jars folder for the db2 drivers to be loaded by

TDI. The db2java.zip will be available in the SQLLIB\java folder of your DB2 setup.

User Property Store

The User Property Store is a System Store table used for maintaining serialized Java objects

associated with a key value. This is where persistent component parameters and properties

(such as the Iterator State Store) are maintained, as well as data stored by the user.

For example, when you set the Iterator State Store parameter for the Active Directory

Changelog Connector, you are specifying the key value that the Connector uses to save and

restore Iterator state. If you want the Iteration to start with the first (or last) change entry,

simply delete the Iterator State Store entry in the User Property Store (that is, click the Delete

button next to the parameter).

The user can persist his own objects with the following system calls:

84 IBM Tivoli Directory Integrator 6.1: Users Guide

system.setPersistentObject(keyValue,obj)

Saves the object obj in the User Property Store using the specified keyValue. The object

is returned if it was saved successfully, otherwise the function returns null.

system.getPersistentObject(keyValue)

Returns the object with the specified keyValue from the User Property Store. If the

keyValue is not found, then the function returns null.

system.deletePersistentObject(keyValue)

Deletes the object with the specified keyValue in the User Property Store. This function

returns the object that was deleted, or null if the keyValue was not found.

These methods access the default User Property Store.

Note: However, you can create and use your own stores using the Store Factory .

If you view the User Property Store from the System Store window, note that it has the

following table definition:

Key The unique key (512 chars)

Entry The object associated with key

Note: Any object to be persisted in the User Property store must be serializable.

Delta Store

The Delta Store is found under the Delta Tables folder in the System Store Browser. Each

table represents one Delta Store parameter setting (in the Delta tab of an Iterator). There are a

number of classes and methods for working directly with the Delta Store, although this is not

recommended. For more information on the Delta feature, see the section entitled “Deltas and

compute changes” on page 79.

Checkpoint/Restart Store

The Checkpoint/Restart store consists of a number of classes that aid the AssemblyLine and

other components to implement Checkpoint/Restart. See“Checkpoint/Restart” on page 95.

Store Factory methods

The following are examples of methods that can be used with the Store Factory:

public static PropertyStore getDefaultPropertyStore () throws Exception;

Returns the default property store.

public static PropertyStore getPropertyStore (String table) throws Exception;

Returns the Property Store identified by name. Only one instance of a given name is

present at one time.

@param name

The property store name.

@return

The property store object associated with name.

Chapter 2. IBM Tivoli Directory Integrator concepts 85

public static String getSystemDatabaseURL ();

Returns the System Store JDBC URL.

public static Connection getConnection () throws Exception;

Returns a connection object to the default database.

public static Connection getConnection (String database) throws Exception;

Returns a connection object to the named database with AutoCommit set to TRUE.

@param database

The database name

public static Connection getConnection (String database, boolean autoCommit) throws

Exception;

Returns a connection object to the named database.

@param database

The database name

@param autocommit

The auto-commit flag

@return

A connection object to the named database

public static boolean dropTable (Connection connection, String table);

Drops a table in the database associated with connection.

@param connection

The connection object obtained by getConnection()

@param table

The table to drop

public static void verifyTable (Connection connection, String table, Vector sql)

throws Exception;

Verifies that a table is accessible in the database.

@param connection

The connection object obtained by getConnection(). If NULL, a connection to

the default table is obtained.

@param table

The table name to verify.

@param sql

A vector of SQL statements to create the table if it does not exist.

public static Exception dropTable (String tableName);

Drops a table in the default database.

@param tableName

The name of the table to drop

86 IBM Tivoli Directory Integrator 6.1: Users Guide

public static byte[] serializeObject (Object obj) throws Exception;

Serializes an object to a byte array.

@param obj

The object to serialize

@return

The byte array containing the serialized object

public static Object deserializeObject (byte[] array) throws Exception;

Deserializes a byte array into a Java object.

@param array

The byte array with the serialized Java object

@return

The resurrected Java object

Property Store methods

The following are examples of methods that can be used with the Property Store:

public Object setProperty (String key, Object obj) throws Exception;

Adds or updates a value in the property store. If an update is performed the old

value is returned.

@param key

The unique identifier

@param obj

The value

@return

The old value in case of an update

public Object getProperty (String key) throws Exception;

Returns a value in the property store.

@param key

The unique identifier

@return

Value in the store or NULL if not found

public Object removeProperty (String key) throws Exception;

Removes a value in the property store.

@param key

The unique identifier to remove

@return

The old value or NULL if key is not in the table

Chapter 2. IBM Tivoli Directory Integrator concepts 87

UserFunctions (system object) methods

The UserFunctions class (for example, the system object) has additional methods defined to

get/set objects in the System Property Store:

public Object getPersistentObject (String key) throws Exception;

This method retrieves a named object from the default system property store.

@param key

The unique key

public Object setPersistentObject (String key, Object value) throws Exception;

This method stores a named object in the default system property store.

@param key

The unique key

@param value

The object to store (must be Java serializable)

@return

The old object if any

public Object removePersistentObject (String key) throws Exception;

This method removes a named object in the default system property store.

@param key

The unique key

@return

The old object if any

Property Store

The Properties framework provides a common interface for managing and using all

TDI-related properties. It builds on Connector technology, allowing you to read and write

properties to a broad range of systems and data stores (not just files as in previous versions).

See “Properties” on page 194 for more information.

Inheritance

All Connectors can inherit configuration from other Connectors located in your Connector

Library, or from system Connectors included as part of IBM Tivoli Directory Integrator The

inheritance is recursive (for example, myldap can inherit from corpldap in your Connector

library, which can then inherit from com.ibm.di.connector.JLDAPConnector, the standard

LDAP Connector included with IBM Tivoli Directory Integrator

Connection parameters, Parsers, schema, attribute maps, Link Criteria, Hooks, and Delta

settings from other Connectors can all be inherited. To get an overview of a Connectors

inheritance settings, click the Inheritance button for that Connector. Optionally, you can view

88 IBM Tivoli Directory Integrator 6.1: Users Guide

and change inheritance settings for any tab (Input Map, Delta, and so forth) by clicking on

the Inherit from: box at the bottom right hand corner of the tab. See ″Adding the Input

Connector″ in IBM Tivoli Directory Integrator 6.1: Getting Started for more information.

Inheriting from a Connector in the Connector library enables inheritance of every part of that

Connector. The sole exception is the Delta settings. The Delta settings are not inheritable.

Attribute Mapping

An Attribute Map is a set of rules that define how the Attributes of an Entry are copied,

transformed and/or computed. For example, an Attribute Map component (AttMap) specifies

a list of Attributes that are to be stored in the Work Entry. Attribute Maps are also available

for Connectors and Functions as Input and Output Maps. To understand how these work,

first consider that Connector or Function component itself is divided into two parts:

v A generic part provided by the Server kernel that allows the component to be 'clicked' into

an AssemblyLine and that provides consistent and predictable behavior regardless of the

platform or technology being used. This is the AL component wrapper that holds

customizable settings like Hooks, Input/Output Maps, Link Criteria and Connection Failure

handling.

v A technology-specific part that understands the technical details of the data source or

function being accessed. This is known as a Component Interface, and it can exchanged for

a different Interface without affecting the customization of the AL component. For

Connectors this is the Connector Interface, while Functions have Function Interfaces9.

Each Interface has its own Entry object (called the 'conn' Entry) that is used as a cache for

read and write operations. Whenever data is read in by a component, it is marshalled from

native types to Java objects and stored in the conn Entry. In order to bring these cached

values into the Work Entry for processing, an Input Attribute Map is provided (called an

'Input Map'). Conversely, if a component Interface is to write out information to an API or

data source, you are provided with an Output Map for taking data in the Work Entry and

copying/transforming it to the conn Entry. An output component can only write data found

in its conn Entry.

The conn Entry is a temporary object that only exists during Attribute Mapping, and is

therefore of limited availability in scripting. So when a Connector reads in and parses data,

this information is stored in conn and must be transferred to the Work Entry, otherwise data

read by the component Interface will not be available to the AssemblyLine. As mentioned

above, you must transfer Attributes from the Work Entry to conn in order for an output

Connector to be able to write this information to the data source. The conn Entry is only

available for scripting in Attribute Mapping code, and in the Hooks that follow the Attribute

9. Whenever you choose to script a component (like the Script Connector or Script Function) you only implement the

Interface methods needed by the modes your component will support.

Chapter 2. IBM Tivoli Directory Integrator concepts 89

Map (see “Conn object” on page 92). You can also refer to the ″Hook Flow Diagrams″ in IBM

Tivoli Directory Integrator 6.1: Reference Guide for more information on when the temporary

system script variables are available.

Depending on the mode the Connector is in, the attribute mapping is done in the Input Map

tab or the Output Map tab of the Connector.

For example, a Connector Interface can retrieve the attributes frstnm (first name) and lstnm

(last name). The Input Map takes these and concatenates the values into a single FullName

Attribute, making only this available to other Connectors within the AssemblyLine.

On the AssemblyLine Config ... tab, there is an option to automatically map all attributes.

Selecting this option causes all attributes to be mapped for each Connector with no Attribute

Map configured. Specifically, if this is an input Connector (Iterator, Lookup, CallReply, or

Delete), all attributes are copied from the conn Entry to the Work Entry. In the case of an

output Connector (AddOnly, Update, or CallReply), all attributes are copied the other way:

from work to conn.

Automatic attribute mapping is an AssemblyLine global value and affects all Connectors

without an explicit attribute map. If even a single Attribute is specified in an Input or Output

Map, then the Auto-map functionality is disabled for this map.

You can specify automatic mapping of all Attributes by using the special attribute name ’*’

(the wildcard map). The wildcard map can be combined with individual mappings for

specific attributes (even adding new ones).

Finally, note that both the name of the Attribute to map, as well as the mapping itself can be

specified using an Expression. See“Expressions” on page 111 for more information.

Null Behavior

Occasionally, the system tries to map an attribute that is missing. For example, if an optional

telephone number is not present in the input data source, or an attribute in an Output Map

has been removed from the work Entry. Different data sources treat missing values in

different ways (NULL value, empty string) and the IBM Tivoli Directory Integrator provides a

way of mapping missing attributes as well. This feature is called Null Behavior and with it

you can define both what a "Null value" is as well as how it is to be handled.

The JDBC Connector has the jdbcExposeNullValues parameter setting, enabling you to map

NULL values to missing Attributes (see ″JDBC Connector″ in IBM Tivoli Directory Integrator

6.1: Reference Guide).

Null behavior can be specified at a number of levels: system, Config, AssemblyLine,

AttributeMap and Attribute. However, since Null Behavior is highly data source-specific, it

makes most sense to set this system property at the Attribute Maplevel (e.g. for all Attributes

handled by a Connector's Input/Output Maps). These possible levels are described here in

more detail:

90 IBM Tivoli Directory Integrator 6.1: Users Guide

System level

Specifying system level Null Behavior is done in the global.properties file by setting

the rsadmin.attribute.nullBehavior and rsadmin.attribute.nullDefinition

properties one of the values listed later in this section.

Config level

This overrides System level Null Behavior, and is configured by setting the

rsadmin.attribute.nullBehavior and/or rsadmin.attribute.nullDefinition

properties in either a Property Store to one of the following values listed later in this

section.

AssemblyLine level

AssemblyLine Null Behavior is specified in by pressing the Null Value Behavior

button in the AL Config tab.

Attribute Map level

Defining Null Behavior for all the Attribute in a map is done by pressing the Null

button above the Attribute Map list.

Attribute level

Null Behavior can be configured for a specific attribute by clicking on it in an

Attribute Map and selecting the desired behavior from the drop-down in the Attribute

Details pane.

Null Behavior supports five different settings for defining a "null value", as shown below

(typically defined in the Solution or Global-Property Store). Each setting shows the actual

property value in parenthesis. Note that these definitions are listed in inclusive order, so that

the second case also includes the first one; the third one includes the first two; and so forth:

Attribute is missing (AbsentAttribute)

This situation arises when the Attribute referenced as the source of value(s) in an

Attribute Map is missing.

Attribute with no values (EmptyAttribute)

This is the case when the Attribute used as the source of value(s) in an Attribute is

found, but has no values. The previous case is also checked for.

Attribute contains an empty string value(EmptyString)

The Attribute is found, but has only a single string value.

Value (value)

The Attribute contains a specified value. For AssemblyLine, Attribute Map and

Attribute-level Null value definition,, this value is set in the Value field of the Null

Behavior Dialog. Here you can specify multiple attribute values if desired by placing

values on separate lines. If you use rsadmin.attribute.nullDefinition for system and

Config level setting then you must also set the rsadmin.attribute.nullDefinitionValue

property.

Default Behavior (Default Behavior)

This setting indicates that the Null value definition must be inherited from a higher

Chapter 2. IBM Tivoli Directory Integrator concepts 91

level. For example, an Attribute inherits its Null value definition from the Attribute

Map setting, which in turn inherits from the AssemblyLine.

Note: Config level Null Behavior overrides any system level settings. Furthermore,

the Default Behavior setting at system level is the same as specifying delete,

while at Config level this is equivalent to value.

 The Null Behavior feature also lets you define the action to be taken in case a "null value" is

detected:

Empty String (empty string)

Missing attributes are mapped with a single value which has an empty String value

(″″).

Null (null)

Missing attributes are mapped with no values, meaning that the att.getValue() call

returns null.

Delete (delete)

The attribute is removed from the map.

Value (value)

Missing attributes are mapped with a specified value. For AssemblyLine, Attribute

Map and Attribute-level Null Behavior, the values are set in the Value edit of the Null

Behavior Dialog. Here you can specify multiple attribute values if desired by placing

values on separate lines. If you use rsadmin.attribute.nullBehavior for system and

Config level settings then you must also set the rsadmin.attribute.nullBehaviorValue

property.

Default Behavior (Default Behavior)

This setting indicates that Null Behavior must be inherited from a higher level. For

example, Attribute level inherits from the AttributeMap, which in turn inherits from

the AssemblyLine setting.

Note: Config level Null Behavior overrides any system level settings. Furthermore,

the Default Behavior setting at system level is the same as specifying delete,

while at Config level this is equivalent to value.

 These options are usually set in the configuration file’s Java Properties section: See

″Preferences (Java properties)″ in IBM Tivoli Directory Integrator 6.1: Reference Guide for their

name and value.

Conn object

The conn Entry object is used by the component Interface for all data source access. Input

Maps are used to move data from the conn Entry to the Work Entry. Output Maps

copy/transform values in the other direction: from work to conn. The conn Entry is only

available during Attribute Mapping and the Hooks that follow in the mode specific flow (see

92 IBM Tivoli Directory Integrator 6.1: Users Guide

the ″Hook Flow Diagrams″ in IBM Tivoli Directory Integrator 6.1: Reference Guide). Below is a

list of the Hooks that appear near Attribute Mapping, and which therefore have access to the

conn object.

Iterator

After the Connector has read and parsed the data into the conn object, Attribute

Mapping is done. The After GetNext Hook is called just before Attribute Mapping is

done, and the GetNext OK Hook is called immediately afterwards, so both have

access to conn.

Lookup

After the Connector has located the data and put it into the conn object, Attribute

Mapping is done. The After Lookup Hook is called before Attribute Mapping is done,

and the Lookup OK Hook is called afterwards, so both have access to conn.

Update

The first thing the Connector does is try to locate the Entry to be updated in order to

determine whether an Add or Modify operation is needed:

v If no Entry is found, Attribute Mapping is done for the resulting add. Then empty

Attributes are removed, and so are Attributes not marked as Add in the Attribute

Map. Then the Before Add Hook is called, and the Entry is added to the source.

On completion, the After Add Hook is called. Both Hooks have access to conn

v If more than one matching Entry is found, the Multiple Entries Found Hook is

called. If this Hook does not exist, the update fails. The conn object is not available

in this Hook, but the work object is.

v If one matching Entry is found, Attribute Mapping is done. The current object

refers to the object found and which is to be updated, and conn refers to the object

containing the new values. The work object is also available. Then the After

Lookup and Before Modify Hooks are called, and attributes not marked as Mod in

the Attribute Map are removed. If Compute Changes is enabled, and there are

changes, the Before Applying Changes Hook is called. Then the data source is

updated with the conn Entry, and the After Modify Hook is called, or the Modify

No Changes Hook is called. The current object is available in all these Hooks.

AddOnly

After the Attribute Mapping, empty Attributes are removed. Then the Hook Before

Add is called, and the Entry is added to the source. Afterwards the Hook After Add

is called. Both Hooks have access to conn.

Delete Input Attribute Mapping takes place, and conn is available and contains the entry to

be deleted in the After Lookup, Before Delete and After Delete Hooks.

CallReply

No Attribute Mapping takes place, and therefore no conn object is available. Both

Hooks have access to conn.

Chapter 2. IBM Tivoli Directory Integrator concepts 93

Important Config and system objects

All thread owners (AssemblyLines and EventHandlers) are accessed in scripts through the

task object. See ″The task object″, IBM Tivoli Directory Integrator 6.1: Reference Guide.

The task object is actually the thread that starts and executes the AssemblyLine or

EventHandler, and gives you access to the log for this process (for example, the

task.logmsg() method), enables you to access configuration parameters (like Null Behavior

settings), and provides the debug commands, debugBreak() and debugMsg().

In addition, Connectors in the AssemblyLine are automatically declared as script variables

with the names given them in the AssemblyLine configuration. Hence, you must name

Connectors such that they are valid variable names in the selected script language.

In addition, you have the primary thread, owned by the Config Editor or the Server,

depending on which system is started. This object is available through the main variable, and

provides methods for writing to the system log, starting AssemblyLines and EventHandlers

and accessing any part of the Config. For more information, see ″Main object″, IBM Tivoli

Directory Integrator 6.1: Reference Guide for more information. This object has methods for

manipulating AssemblyLines and querying status information.

Controlling the number of threads

Note: This section is for advanced users.

As stated previously, AssemblyLines and EventHandlers are both threads. Certain

EventHandlers (such as TCP and HTTP) might even start a new thread for every new

connection they receive. Branching out numerous threads by letting AssemblyLines and

EventHandlers start a number of other threads can cause you to run out of memory.

Using global system properties

The global system property com.ibm.di.server.maxThreadsRunning can be used to reduce the

maximum number of threads started by the server. This property can either be set in the

global.properties file or in the Java Properties for a single Config. Thread control is enforced

by delaying the start of new threads once the limit is reached. This approach helps avoid

deadlocks where an AssemblyLine cannot finish before a branched (forked) one has

completed. However, you can still get more threads started than you want. If you want better

control over threading in your solution, you will need to handle this with script.

Using scripting

If you want to completely avoid starting too many threads, an easy way is to wait for

AssemblyLines to finish (with the join() method) before you start a new one. The following

code:

94 IBM Tivoli Directory Integrator 6.1: Users Guide

// Here we start the AssemblyLine itself

var al = main.startAL ("myAssemblyLine", entry);

// wait for al to finish

al.join();

var result = al.getResult();

does just that. If you omit the al.join() call, the main thread (AssemblyLine or

EventHandler) continues without waiting for the started AssemblyLine to complete.

Another way of limiting the number of threads you have is to use the function

java.lang.Thread.activeCount() (and optionally java.lang.Thread.sleep()).

The activeCount() method can be used to determine the total number of threads in use by

the current thread owner (task).

For example, if the EventHandler checks how many running threads it owns, it can sleep

before starting new ones. Here is the JavaScript code for the EventHandler to sleep 1000

milliseconds if more than 20 child threads are still running.

Note: The Config Editor and Server use some threads, so your activeCount starts around 4.

while (java.lang.Thread.activeCount() > 20)

 java.lang.Thread.sleep(1000);

main.startAL ("AssemblyLine", entry);

If you wanted to start AssemblyLines asynchronously until your thread count is too high, you

can write something like the following:

var al = main.startAL ("myAssemblyLne");

main.logmsg ("Number of threads: " + java.lang.Thread.activeCount());

if (java.lang.Thread.activeCount() > 20)

 al.join();

Checkpoint/Restart

IBM Tivoli Directory Integrator enables the user to checkpoint the operation of AssemblyLines

and restart them from the point where they were interrupted by either a controlled or

uncontrolled shutdown.

Checkpoint/Restart is not supported in AssemblyLines containing a Connector in Server

mode, an Iterator Connector with Delta enabled, an AssemblyLine using the Sandbox facility,

or a conditional component like a Branch or Loop. The server will abort the AssemblyLine

when/if this is discovered.

This Checkpoint/Restart framework stores state information and other parameters at various

points during AssemblyLine execution, enabling the server to reinstate the running

environment of the AssemblyLine so that it can be restarted in a controlled way. This can be

on the original server, but potentially can also be on a different machine.

Chapter 2. IBM Tivoli Directory Integrator concepts 95

The ability to restart an AssemblyLine is one of the building blocks for failover functionality.

Note that IBM Tivoli Directory Integrator is not a system that provides general failover

functionality straight out-of-the-box. Rather, it has a framework that provides generic building

blocks for this kind of functionality, and can in this way reduce the amount of hand-coding

that might otherwise be required. Be aware, though, that the framework does not implement

full checkpoint and restart functionality at the click of a mouse. Some thought as to how it is

applied to the business problem at hand is essential.

Note: Enabling Checkpoint/Restart can degrade performance. Large amounts of information

must be securely written to a repository, and this comes at a price. Occasionally, you

might be better off not using the Checkpoint/Restart framework at all, as reprocessing

a certain amount of entries is less costly than the performance hit on the first attempt.

However, sometimes reprocessing entries is not an option.

Saving and storing AssemblyLine state information

The rationale behind the functionality is simple. Something went wrong, and you want to

continue where you stopped. There are at least two reasons for this:

Performance

You don’t want to redo things you have already done. This is only true for

AssemblyLines that are very slow due to the Connectors they invoke. AssemblyLines

that normally process high volumes of data can experience serious loss of

performance when Checkpoint/Restart is enabled.

Business implications

Resetting a telephone-number once might not be an issue, but ordering a ticket

multiple times certainly is.

You want to avoid doing work that has already been done. However, if the AssemblyLine,

during its first run, caused side-effects (for example, building some information store outside

IBM Tivoli Directory Integrator during Hook processing), then at restart, that information

store is not available. The IBM Tivoli Directory Integrator Checkpoint/Restart framework can

only restore state and environment under its direct control.

The IBM Tivoli Directory Integrator Checkpoint/Restart framework saves the following

information in a designated store. The directory path for this store is specified in the

Checkpoint tab of the AssemblyLine. When the AssemblyLine is run, the “System Store” on

page 82 framework creates and maintains this database for you, storing the following state

objects:

v Initial work entry

v TCB

v Position in the AssemblyLine (which step, and which Connector)

v work Entry object at any given step

v For an Iterator, the position in the input set (cursor)

v Likewise, for a File System Connector in AddOnly mode, the point at which the last entry

was successfully written

96 IBM Tivoli Directory Integrator 6.1: Users Guide

v Other state information for the Connector as required to be able to reinstate it

Note: Whatever is saved during AssemblyLine processing is highly configurable. Do not

assume that in order for an AssemblyLine to be restartable every element and every

step must be saved. It is possible that a good design enables a restart even without

some of these elements. Saving less rather than more impacts performance in a positive

way. You specify what to save in the AssemblyLine Checkpoint tab.

In the IBM Tivoli Directory Integrator Config Editor, you find a master switch for the whole

AssemblyLine called Enable Checkpoint. This must be on for any Checkpoint/Restart

functionality and any recording of information to take place. Also, in order to be able to

distinguish between different runs of the AssemblyLine you must specify an Identifier, which

can be used in a subsequent Restart. (If nothing is specified, a default in the form of

IDI_CP_AssemblyLine-name is used.)

Note: If you use the "Commit on end of AL cycle" option (an AL global option in the AL tab)

you should not be using Checkpoint/Restart, and you should switch off the commit

"after every DB operation" for each and every Connector in the AssemblyLine.

Otherwise unpredictable results (like half-updated databases) may occur. Conversely, if

you choose to use CheckPoint/Restart, you should enable Autocommit for each and

every Connector, and not use "Commit on end of AL cycle".

Then, for each Connector in the AssemblyLine, there is an Enabled checkbox; this must be on

for the CPR framework to consider recording any information about this particular Connector

at all. It also causes Connectors in Iterator mode to save the work Entry as it hands off

control to the next Connector.

Checking the work Entry checkbox instructs the Checkpoint/Restart framework to record the

contents and state of the work Entry before this particular Connector does its work in the

AssemblyLine. By enabling the Connector Restart Info checkbox you ensure that the

Checkpoint/Restart records any information required for this connector to be able to make a

meaningful resumption of its processing during an AssemblyLine restart. An example of this

is the position in an input file.

Notes:

1. EventHandlers do not know anything about Checkpoint/Restart, and enabling

AssemblyLines for Checkpoint/Restart which are started from EventHandlers can be

difficult to get right in terms of synchronization during a possible Restart.

2. Make sure that in your implemented solution you cannot end up in a situation where

multiple instances of the same AssemblyLine get started using the same Identifier. There is

nothing in the framework that stops you from doing this, and if multiple AssemblyLines

using the same Identifier do execute at the same time they will also both use the same

tables in the System Store for bookkeeping, with unpredictable results.

A common situation where this might occur is if you start an AssemblyLine (using

Checkpoint/Restart) from an EventHandler, and the EventHandler does not wait for the

AssemblyLine to complete before returning to the main event loop. In such a case there is

Chapter 2. IBM Tivoli Directory Integrator concepts 97

a high chance that when the Config file is rerun after an abnormal termination and

EventHandlers restart, they may start multiple instances of an AssemblyLine, all with the

same Identifier. They would all enter Restart processing using the same Restart

information, with very strange results.

3. It is good practice to start such an AssemblyLine with an empty Initial Work Entry (IWE)

once when an EventHandler starts up. If there was an instance of the AssemblyLine left in

restartable mode, it will now complete its work; otherwise it will get the null IWE and do

nothing (make sure your AssemblyLine does not abort on an empty work entry).

It follows that the Checkpoint/Restart framework can restore state and environment only

under its direct control and only if it was saved in the first place. Anything the user builds up

outside the Checkpoint/Restart framework might not be available at restart. If continued

AssemblyLine processing is predicated upon such external information being in the exact

same state, then it is up to the user to ensure that this external information is restored before

a successful attempt at a restart can be made.

One example of an AssemblyLine that might survive a restart fairly well is one that updates a

JDBC database. Transactions executed by a JDBC Connector in AddOnly or Update mode are

secured by the integrity mechanisms of the underlying database, so all information stored

there might still be available when the AssemblyLine is restarted (provided no other processes

manipulate or change that data). Even data stored by direct JDBC calls in Hooks might

survive this scenario.

However, anything stored by a JavaScript call to files in the underlying operating system is

likely to be lost when the AssemblyLine terminates unexpectedly, and therefore are not

available at restart.

Notes:

1. When IBM Tivoli Directory Integrator writes to files in a Checkpoint/Restart-enabled

AssemblyLine, it takes care to flush output to files where and when appropriate. A user

writing directly to files needs to take the same precautions.

2. Whether you enabled saving the work entry or not, the work entry is automatically saved

for Iterators.

If (Checkpoint/Restart enabled AND ConnectorIsIterator)

 alwaysSaveWorkEntry().

Limitations

Because of the way some Connectors and Parsers are implemented, there are some limitations

on what the Checkpoint/Restart framework can safeguard.

For Connectors in AddOnly mode, any data stored in memory is lost if the AssemblyLine

terminates unexpectedly. For example, a File System Connector using the simple XML Parser

writes the entire XML document when the Connector closes at the end of the AssemblyLine

process. If the AssemblyLine is interrupted before this point and the Connector close does not

98 IBM Tivoli Directory Integrator 6.1: Users Guide

take place, nothing is found in the output. Therefore, any Connector operating on a dataset

using the XML parser (and its derivatives, DSML and SOAP) in AddOnly mode, and with the

Connector Restart Info Save flag enabled, fails.

Note: With care, you can work around this limitation. However, the framework does not do

that out of the box.

Another example of where state information is somewhat difficult to maintain correctly is a

JMS connector. Distinguish between reading in Auto-acknowledge mode or not.

Conceptually, by using Checkpoint/Restart, and with Auto-acknowledge set to on, the user’s

task can become much easier as the framework is supposed to save the work object and

acknowledge receipt of the message in one AssemblyLine step.

However, because of certain limitations in the way Checkpoint/Restart is implemented in the

AssemblyLine flow process, there currently exists a window between where a message is

received from the JMS queue, and where the applicable contents of this message, mapped into

the work entry, is committed to the Checkpoint/Restart System Store. If an interrupt happens

in this window, then with Checkpoint/Restart enabled and Auto-acknowledge on, on restart

this message is lost. With Checkpoint/Restart enabled and Auto-acknowledge off, the

message is retrieved once more from the queue, which in most cases is a more desirable

behavior. Still, for proper queue processing, messages must be acknowledged at some point in

this latter mode. To keep any other windows of failure as small as possible this is best done

by inserting a Script component just after the JMS connector in the AssemblyLine which does

just one thing: tell the JMS bus (that is, acknowledge) receipt of the message, because from

here on we are certain that we have what we need of the message present in the work entry,

properly safeguarded by the Checkpoint/Restart framework.

The following table presents the possible combinations of Connectors, any Parsers (if enabled

and required by the Connector) and their operation Modes, not only specifically in the context

of the Checkpoint/Restart framework but even in the general IBM Tivoli Directory Integrator

context:

 Connector Parser Mode Remarks

I L C A U D

File System

CSV Y X X Y X X

XML Y X X N X X

Fixed Y X X Y X X

DSML (v1) Y X X N X X

HTTP Y X X Y X X

LDIF Y X X Y X X

Line Reader Y X X Y X X

Chapter 2. IBM Tivoli Directory Integrator concepts 99

SOAP Y X X N X X

Simple Y X X Y X X

Script Parser Y X X – X X Any writing to output files

must be flushed explicitly.

URL Connector

CSV – X X N X X

XML – X X N X X

Fixed – X X N X X

DSML (v1) – X X N X X

HTTP – X X N X X

LDIF – X X N X X

Line Reader – X X N X X

SOAP – X X N X X

Simple – X X N X X

Script Parser – X X N X X

HTTP Client

CSV – – – – X X

XML – – – – X X

Fixed – – – – X X

DSML (v1) – – – – X X

HTTP – – – – X X

LDIF – – – – X X

Line Reader – – – – X X

SOAP – – – – X X

Simple – – – – X X

Script Parser – – – – X X

HTTPServer

CSV Y X X N X X The HTTP Server

Connector is fundamentally

incompatible in a

restartable AssemblyLine.

XML Y X X N X X

Fixed Y X X N X X

DSML (v1) Y X X N X X

HTTP Y X X N X X

100 IBM Tivoli Directory Integrator 6.1: Users Guide

LDIF Y X X N X X

Line Reader Y X X N X X

SOAP Y X X N X X

Simple Y X X N X X

Script Parser Y X X N X X

FTP Client

CSV Y X X N X X

XML Y X X N X X

Fixed Y X X N X X

DSML (v1) Y X X N X X

HTTP Y X X N X X

LDIF Y X X N X X

Line Reader Y X X N X X

SOAP Y X X N X X

Simple Y X X N X X

Script Parser Y X X N X X

TCP

CSV Y X X – X X

XML Y X X – X X

Fixed Y X X – X X

DSML (v1) Y X X – X X

HTTP Y X X – X X

LDIF Y X X – X X

Line Reader Y X X – X X

SOAP Y X X – X X

Simple Y X X – X X

Script Parser Y X X – X X

Memory Stream

CSV N X X N X X

XML N X X N X X

Fixed N X X N X X

DSML (v1) N X X N X X

HTTP N X X N X X

LDIF N X X N X X

Chapter 2. IBM Tivoli Directory Integrator concepts 101

Line Reader N X X N X X

SOAP N X X N X X

Simple N X X N X X

Script Parser N X X N X X

Script Connector – – – – – – Any Checkpoint/Restart

logic is implemented by

user.

SNMP Y X X Y X X

Notes® Y Y X Y Y Y

Domino® Users Connector Y Y X Y Y Y

LDAP Y Y X Y Y Y

JNDI Y Y X Y Y Y

Mailbox N – X X X –

JDBC Y Y X Y Y Y

JMS

CSV Y Y X Y X X

XML Y Y X Y X X

Fixed Y Y X Y X X

DSML (v1) Y Y X Y X X

HTTP Y Y X Y X X

LDIF Y Y X Y X X

Line Reader Y Y X Y X X

SOAP Y Y X Y X X

Simple Y Y X Y X X

Script Parser Y Y X Y X X

IBM-MQ

CSV Y Y X Y X X

XML Y Y X Y X X

Fixed Y Y X Y X X

DSML (v1) Y Y X Y X X

HTTP Y Y X Y X X

LDIF Y Y X Y X X

Line Reader Y Y X Y X X

SOAP Y Y X Y X X

Simple Y Y X Y X X

102 IBM Tivoli Directory Integrator 6.1: Users Guide

Script Parser Y Y X Y X X

IBM Directory Changelog Y Y X X X X

Active Directory Changelog Y Y X X X X

Netscape Changelog Y Y X X X X

Exchange Changelog Y Y X X X X

BTree Object DB Y Y X Y Y Y

Command Line

CSV Y X X Y X X

XML Y X X Y X X

Fixed Y X X Y X X

DSML (v1) Y X X Y X X

HTTP Y X X Y X X

LDIF Y X X Y X X

Line Reader Y X X Y X X

SOAP Y X X Y X X

Simple Y X X Y X X

Script Parser Y X X Y X X

The following is the legend for this table:

Y Connector or Parser has been enabled for Checkpoint/Restart.

N Connector or Parser is incompatible with Checkpoint/Restart.

– No special considerations or not available to Checkpoint/Restart. Use with care.

X Illegal mode for this Connector, or illegal combination of mode and Parser.

I Iterator mode.

L Lookup mode.

C CallReply mode.

A AddOnly mode.

U Update mode.

D Delete mode.

There are two more Modes: Server and Delta. However, AssemblyLines containing

Connectors in any of those two modes are not compatible with Checkpoint/Restart.

Chapter 2. IBM Tivoli Directory Integrator concepts 103

Note: Any variables declared and used in the scripting environment (hooks, attribute

mapping, and so forth) must be dealt with by the user for Checkpoint/Restart

purposes.

Restart implications

When an AssemblyLine starts normally, it runs defined Prologs, both before Connectors are

initialized and after. The Connectors themselves run various Hooks grouped under the Prolog

tab, notably, the Before Initialize Hook and After Initialize Hook.

During a restart, it is imperative that you do not do anything in these Hooks that might

contradict an operation being resumed halfway through. For example, a File System

Connector doing maintenance tasks such as deleting files, setting up temporary directories,

and so forth. In other words, in order to make an AssemblyLine safe and suitable for a

restartable environment, some modifications need to be made to the various scripted

elements, both at the AssemblyLine level (the Prologs and Epilogs) as well as the individual

Connectors Hooks and Script Components.

In order to be able to tell whether a restart is taking place, a Boolean method named

task.isRestarting() can be invoked. It returns true during restart processing. Once the

AssemblyLine has resumed fully, the method returns false. This enables any user code to take

special precautions during a restart, and in the previous example the File System Connector

can skip the maintenance tasks as it wants to continue with the partial results obtained so far

before it was interrupted.

Restart actions

The following steps take place when an AssemblyLine is started:

1. An AssemblyLine is started (restarted).

2. The Server task verifies there is valid Checkpoint/Restart data for the Checkpoint

Identifier specified for this AssemblyLine.

3. If the data is valid and indicates that a restart is necessary, the AssemblyLine Prolog is

run, and Connectors are initialized and told that they are restarting. Then After

Initialization Prologs are executed.

4. Various data elements of the interrupted AssemblyLine are restored:

a. work entry as it existed at the point of interruption.

b. Connector-specific information for all Connectors.

c. If the AssemblyLine had one or more Iterators, the number of times the active Iterator

had executed is restored. In other words, the position in the input source is restored.
5. The AssemblyLine resumes the main loop from just past the last step that was executed

and saved in the Restart info. It can cause the AssemblyLine to jump straight to the

Epilogs or directly to one of the Connectors in the AssemblyLine, not necessarily the first

one.

The matter of restoring the position in the input source in the case of an Iterator requires

some more explanation.

104 IBM Tivoli Directory Integrator 6.1: Users Guide

Iterator Connectors

Connectors in Iterator mode generally fall into one of two categories:

v Those that operate on a fixed set of data (for example, a file)

v Those that iterate on a dynamically created result set (for example, SQL SELECT,

ldapsearch, and so forth)

For this purpose, an FTP Client Connector is an example of one that operates on a fixed set of

data. Even though the Connector reads through a network connection, the data set it operates

on is still a fixed set that sits on a file system somewhere. It just is not based locally.

The Iterators in the first category are repositioned by the Checkpoint/Restart framework at

restart by simply reading (and discarding) as many entries from the input source as the

interrupted AssemblyLine had (any Hooks with the exception of the Override GetNext hook

are bypassed). When the AssemblyLine resumes operations properly and gets to the Iterator,

the correct entry is retrieved.

Note: This holds true, of course, if the input set or file has not changed from the previous run

to the one that is restarting. If it has, the reposition operation will result in an entirely

different position than expected.

However, Iterators in the second category do not attempt to read as many entries as before.

Those Connectors that save their own state information are instructed to reposition

themselves. Other Connectors, such as the JMS Connector, simply uses the first entry

presented on the newly-restored connection.

Note: Again, this will work correctly only if the input set has not changed from the previous

run.

Here is an overview of action taken on restart for the various Connectors in Iterator mode

(provided Restart info is saved):

 Connector in Iterator mode Restart Action

File System Read and Discard

URL Connector Read and Discard

HTTP Client No Action

HTTP Server No Action (incompatible with

Checkpoint/Restart)

FTP Client Read and Discard

TCP No Action

Memory Stream Read and Discard

Script Connector Read and Discard

SNMP No Action

Notes Read and Discard

Chapter 2. IBM Tivoli Directory Integrator concepts 105

Domino Users Connector Read and Discard

LDAP Read and Discard

JNDI Read and Discard

Mailbox Read and Discard

JDBC Read and Discard

JMS No Action

IBM-MQ No Action

IBM Directory Changelog Restart from last Change Number

Active Directory Changelog Restart from last Change Number

Netscape Changelog Restart from last Change Number

Exchange Changelog Restart from last Change Number

BTree Object DB Read and Discard

Command Line Read and Discard

Note: In many cases, depending on the Iterator driving it, a restart of an AssemblyLine might

not make much sense. For example, even though a Memory Stream Connector might

read and discard from the source, this source was a memory object that was not saved

and therefore has not survived the restart. It returns end-of-data immediately. If you

have such components in your AssemblyLine, then by design the AssemblyLine is not

suitable for Checkpoint/Restart.

AddOnly Connectors

Connectors in AddOnly mode fall into two categories:

v Those that operate on a fixed set of data (for example, a file)

v Those that iterate on a network connection and therefore operate on a per-entry basis

Similar to Iterators, AddOnly Connectors attempt, if possible, to restore their position in the

AssemblyLine when the AssemblyLine was running, so that after a restart there is a seamless

continuation of output.

In order to understand the limitations of Connectors in AddOnly mode, there needs to be

distinction between Connectors writing databases (writing single entries or full datasets). The

following table describes this:

 Connector in AddOnly mode Output Quantum

File System Data set

URL Connector Data set

HTTP Client Entry

HTTP Server Entry

106 IBM Tivoli Directory Integrator 6.1: Users Guide

FTP Client Data set

TCP Data set

Memory Stream Data set

Script Connector Entry

SNMP Entry

Notes Entry

Domino Users Connector Entry

LDAP Entry

JNDI Entry

Mailbox na

JDBC Entry

JMS Entry

IBM-MQ Entry

IBM Directory Changelog na

Active Directory Changelog na

Netscape Changelog na

Exchange Changelog na

BTree Object DB Entry

Command Line Data set

Any of the Connectors in AddOnly mode that operate on a data set in the previous table are

incompatible with the XML parser for restart purposes. If Save Connector Restart Info is

enabled for such a combination of Connector/Mode/Parser, the AssemblyLine fails.

For a File System Connector in particular, IBM Tivoli Directory Integrator attempts to seek to

the last reliable position in the output file (truncating any half-written data that might end up

in the file) and append new output from the resumed AssemblyLine there.

In concept, the FTP Client Connector is similar, except the file is on a remote system.

However, the current implementation of this Connector does not enable the same behavior.

Any output to a file on a remote system through an FTP connection is probably lost when the

connection is terminated abnormally on the previous run. In this case, on restart the FTP

Client Connector starts writing a new file (an FTP append mode is not supported).

Chapter 2. IBM Tivoli Directory Integrator concepts 107

The Config

The Config is a complete description of the systems, data flows and events that define your

integration solution. A Config is stored as a highly structured XML document, and can be

encrypted if desired. The AssemblyLines, Connectors, Functions, Scripts, Parsers and Attribute

Maps, along with Server and GUI preferences and so forth are all stored in the Config, and

edited and maintained using the Config Editor (ibmditk).

Usually you have everything in one Config. However, there are situations where you want to

isolate parts of it:

v Usernames and passwords in configured components (or any parameter information) that

you want stored (and even encrypted) elsewhere

v Shared Components that you want to reuse in several Configs

Configs are stored on a file system, and are either edited with the Config Editor locally (that

is, the file system and the Config Editor are on the same system) or remote (in which the

Config Editor is in constant dialog with a remote process, an instantiation of the IBM Tivoli

Directory Integrator server in daemon mode). This latter concept, called the Remote Config

Editor, provides support for platforms with no native Config Editor. It can be used to

read/write/execute a configuration on a remote server, and is an extension to the local Config

Editor. The basic idea is to provide a uniform interface for both remote and local Config files.

Remote Configs

There are two options for loading a remote configuration for editing:

v The configuration is loaded only for editing and cannot be started at all.

v The configuration is loaded for editing and a temporary Config Instance is started on the

Server so that the configuration can be tested while being edited.

In both cases, the configuration loaded for editing is independent of the Configs loaded and

running (normally) on the Server. As a result, you could have the same Config both running

on the Server and independently opened for editing (with or without a temporary Config

Instance). In other words, you cannot edit a Config instance that is running on the Server.

This functionality is only available via Administration and Monitoring Console (AMC).

Furthermore, when you save the Config back to disk on the TDI Server, this operation does

not affect an active instance of the same configuration on the TDI Server. Instead, there are

API calls (like those used by AMC) to perform a ″reload″ operation, bringing in the last

version of the Config from the disk.

See “Remote” on page 140 for a description of the new Remote Configuration interface.

Parameter substitution with Expressions

A large number of panels in the TDI Config Editor provide input fields where parameters to

various components are configured. For example, the Config tabs for Connectors or Functions.

You have the choice of entering a specific value or clicking on the parameter label. This brings

up the Parameter Information Dialog which provides an Expression field for either entering a

TDI Expression, or choosing from the drop-down list of Properties. The parameter

108 IBM Tivoli Directory Integrator 6.1: Users Guide

substitution mechanism allows you to exploit Expression to build parameter values that can

even change over time. See “Expressions” on page 111 for more information.

User-defined Property Stores

These are stored in external files, which can be individually encrypted. They are configured

by clicking the Properties folder in the Config Browser and adding, changing or removing

Property Stores from this list. See “Properties” on page 200 for more information.

Note: Property Stores are intended for externalizing certain configuration parameters such as

username, password, filename and so forth. If you want to save more general

parameters and make them available for your AssemblyLine, see “Config ...” on page

153.

Advanced parameter substitution

In addition to External Properties, there is a more powerful parameter substitution mechanism

in TDI called Expressions which builds on top of the services provided by the standard Java

java.text.MessageFormat class. The MessageFormat class provides powerful substitution and

formatting capabilities, and greatly simplifies how dynamic parameter values are set.

The configuration of these parameter substitutions is accomplished by means of the parameter

substitution editor.

Include/Namespaces

A Config can include items from Configs. These included components belong to another

namespace, but can be used within the context of the including Config as though they were

stored there. See “Includes” on page 198 for more information.

To create a new namespace, select Object–>New Include ... and choose a name (for example,

myInclude) for your namespace (system is reserved). Link the name you choose to a file in

the table, and you can then later refer to myInclude:/Connectors/myConnector to use a

myConnector from the Connector library of your include.

Securing Configs, passwords and sensitive data

TDI saves configuration information in an XML file (Config file) which contains clear text for

all configuration values. This often includes sensitive information like passwords. TDI not

only supports encryption of the entire configuration file, but also protecting individual values

or settings. You can also be set up to automatically handle any component parameters tagged

as passwords. Values entered into these configuration fields are delegated to the specified

Password Property Store . The parameter itself is then set with an Expression that references

the newly created password property. So, as passwords are entered or changed in the

password field, the are actually value is never visible or stored in the Config itself.

Note: changes will not be made to existing Configs. If you want previously defined Config

password parameters stored in the Password Store as well, then you must define a

Password Store and re-enter the passwords themselves.

Chapter 2. IBM Tivoli Directory Integrator concepts 109

Default and user-defined parameter protection

The password protection mechanism is directly related to the configuration panels offered to

the user. The configuration panels, or forms, contain descriptions of each parameter and its

syntax. One type of parameter syntax is the “password” type, which causes the CE to use the

special password edit field for user intput. Whenever the value for a password syntax

component parameter is changed, the value entered is saved to the designated Password

Store. If no such Property Store is configured, then password values are still saved in clear

text in the configuration file.

The new setProtectedParameter(name,value) method in the

com.ibm.di.config.interfaces.BaseConfiguration interface will query the associated

MetamergeConfig object for the default password store. If one is configured, a unique

property name is generated the first time a call to setProptectedParameter is called. This key

is used as the key in the password store. The same property name is written to the

configuration file as a standard property reference. When the value is later retrieved, standard

property resolution takes place to retrieve the actual value from the password store. Hence,

there is not an accompanying getProtectedParameter(name) for retrieval of protected

parameters. The type of protection of the value is not defined by this feature since the

protection mechanism may vary from connector to connector.

New methods in the API

The following methods have been added to the com.ibm.di.entry.Attribute and

com.ibm.di.entry.AttributeInterface classes:

public void setProtected(boolean protect)

If the parameter is true, try to protect the Attribute values by not dumping them in log files:

 public boolean getProtected()

Returns true if the values should not be dumped in log files.

The following method was added to the com.ibm.di.entry.Entry class:

public void setAttribute (Object name, Object value, boolean protect)

Where:

v name is the attribute name

v value is the attribute value. If this parameter is null, then the attribute is removed.

v If the protect parameter is true, do not dump the Attribute values in log files

The following method was added to com.ibm.di.server.TaskCallBlock:

public void setConnectorParameter (String connectorName, Object parameterName,

 Object parameterValue, boolean protect)

If the protect parameter is true, do not write the value of the parameter in log files

Methods that have been modified to not dump protected Attribute values:

110 IBM Tivoli Directory Integrator 6.1: Users Guide

v Log.dumpEntry(Entry e) This will also affect e.g. the dump() and dumpEntry() methods

in AssemblyLine (task) and RS (main).

v Attribute.toString() - Which also affects Entry.toString()

v Attribute.toDeltaString() - Which also affects Entry.toDeltaString()

v TaskCallBlock.setConnectorParameters (AssemblyLine task)

Also modified Entry.mergeAttributeValue(Object p1, AttributeInterface p2) - If either

Attribute is protected, the merged Attribute is protected.

Entry.merge (Entry e, boolean mergevalues) - Make sure merged Attributes are protected if

either of the old Attributes are.

Expressions

TDI boasts an Expressions feature that allows you to compute parameters and other settings

at run-time, making your solutions dynamically configurable. This feature expands on the

Properties handling found in previous versions.

In addition to support for simple External Properties references (fully backwards compatible),

Expressions provide more power in manipulating AssemblyLine and component configuration

settings during AL/component initialization and execution. Expressions can also be used for

Attribute maps, as well as for Conditions and Link Criteria, alleviating much of the scripting

previously required to build dynamically configured solutions. TDI provides an Expressions

editor to facility building these expressions.

The Expressions feature is built on top of the services provided by the standard Java

java.text.MessageFormat class. The MessageFormat class provides powerful substitution and

formatting capabilities. Here is a link to an online page outlining this class and its features:

http://java.sun.com/j2se/1.4.2/docs/api/java/text/MessageFormat.html

In addition to features described in the above class, TDI provides a number of run-time

objects that can be used in expressions – although the availability of some objects will depend

on run-time state (e.g. whether conn/current defined, or the error Entry): The Expressions

syntax provides a short-hand notation for accessing the information in these objects, like

Attributes in a named Entry object, or a specific parameter of a component.

Chapter 2. IBM Tivoli Directory Integrator concepts 111

TDI Reference Value Avaliability

work.attrname[.index] The work entry in the current

AssemblyLine.

The optional index refers to the n’th

value of the attribute. Otherwise the

first value is used.

This Advanced Attribute Map:

 ret.value = work.getString

 (“givenName”) +

 “ “ +

 work.getString(“sn”);

can be expressed simply as:

{work.givenName work.sn}

AssemblyLine

conn.attrname[.index] The conn entry in the current

AssemblyLine

The optional index refers to the n’th

value of the attribute. Otherwise the

first value is used.

AssemblyLine during

attribute mapping

current.attrname[.index] The current entry in the current

AssemblyLine

The optional index refers to the n’th

value of the attribute. Otherwise the

first value is used.

AssemblyLine during

attribute mapping for

Modify

config.param The configuration object of the

“scoped” component/AL: Furthermore,

if “config” is used in the parameter of a

Connector, Parser or Function, then it

refers to the config object of that

component’s Interface (for example,

JDBC Connector, or XML Parser)

param is the name of the parameter

itself, as if you were to make a call to

getParam() or setParam(). For example,

for the JDBC Connector you could

make the following reference:

 {config.jdbcSource]

AssemblyLine

EventHandler

Connector

Parser

Function

Component

112 IBM Tivoli Directory Integrator 6.1: Users Guide

TDI Reference Value Avaliability

alcomponent.name.param The component Interface parameter

value of a named AssemblyLine

component.

name is the name of the AssemblyLine

component

param is the parameter name of the

name object

So, the following Expression:

{alcomponent.DB2conn.jdbcSource}

is equivalent to the following scripted

call:

DB2conn.connector.getParam

 (“jdbcSource”);

AssemblyLine

property[:storename].name

property[:storename/bidi].name

A TDI-Properties reference.

The optional storename targets a

specific Property Store. If no storename

is specified, then the default store is

used.

name is the property name

bidi will, when present, cause setting

the parameter value to forward the call

to the referenced Property Store. When

bidi is present no other substitution

patterns or text is allowed.

Always.

Chapter 2. IBM Tivoli Directory Integrator concepts 113

TDI Reference Value Avaliability

javascript<<EOF script code ...

// Must contain “return”EOF

Embedded script code used to generate a

value for the Expression. This script

must return a value.

The “EOF” text shown is an arbitrary

string that terminates the javascript

snippet. The javascript is collected up

until a single line with the EOF string

is encountered (or no EOF is flag is set

– see the note below).

Note that embedded JavaScript is

evaluated using the AssemblyLine’s

script engine instance, so you have

access to all variables otherwise present

for scripting.

Note: There is a short-hand form of

adding JavaScript that works for input

fields that do not support multiple lines

(like Link Criteria or the names of

Attributes in maps) and can therefore

not have the necessary EOF line:

{javascript return work.getString

 ("givenName")

 + " " + work.getString("surName")}

Always

Embedded JavaScript in Expressions has access to the AssemblyLine’s script engine. As a

result, even script variables defined elsewhere in the AssemblyLine can be accessed. Note that

if you reference a variable or object that is not one of those specifically listed in the tables

shown in this section, the Expression evaluator will check with the AL’s script engine to see if

it is defined there.

Expressions in component parameters

When used for a component parameter, the following objects are of special interest:

 Table 3.

Object Value

config The component's Interface configuration object.

mc The MetamergeConfig object of the config instance

(config.getMetamergeConfig())

work The work Entry of the AssemblyLine.

task The AssemblyLine object.

As an example, take a JDBC Connector with the Table Name parameter set to “Accounts." You

could then click on the SQL Select parameter label and then enter this into the Expression

field at the bottom of the dialog:

114 IBM Tivoli Directory Integrator 6.1: Users Guide

select * from {config.jdbcTable}

This will take the Table Name parameter and create the following SQL Select statement:

select * from Accounts

Or you could get more advanced, and try something like this for the SQL Select parameter:

SELECT {javascript<<EOF

 var str = new Array();

 str[0] = "A";

 str[1] = "B";

 return str.join(",");

EOF

} FROM {property:mystore.tablename} WHERE A = ‘{work.uniqueID}’

The embedded JavaScript will return the value “A,B” which is then used to complete the rest

of the Expression. If you have a Property Store called “mystore” with a “tablename” property

set to “Accounts”, and there a “uniqueID” Attribute in the work Entry with the value “42”,

the final result will be:

SELECT A,B FROM Accounts WHERE A = ‘42’

which is not displayed onscreen in the CE: “@SUBSTITUTE”. Simply entering curly braces

will not cause Expression evaluation to be done for the parameter value. Instead you have

three choices when tying Expressions to parameters:

1. Press Ctrl+E to open the Expressions Editor dialog while in the parameter input field.

2. Click on the Parameter label and enter the Expression directly into the field labeled

“Expression” at the bottom of the Parameter Information Dialog.

3. Type the special preamble, @SUBSTITUTE, manually into the parameter input field,

followed by the Expression. For example:

@SUBSTITUTEhttp://{property.myProperties:HTTP.Host}/

Expressions in LinkCriteria

Expressions in Link Criteria provide a similar list of pre-defined objects. Again, note that you

also have access to any other objects or variables currently defined in the AssemblyLine’s

script engine.

 Table 4.

Object Value

config The component’s Interface configuration object.

mc The MetamergeConfig object of the config instance

(config.getMetamergeConfig())

work The work Entry of the AssemblyLine

task The AssemblyLine The component itself, or a

named component.

Chapter 2. IBM Tivoli Directory Integrator concepts 115

Table 4. (continued)

Object Value

alcomponent The Branch/Loop component

So, for example, let’s say that you want to set up the Link Criteria for a Connector so that the

Attribute to use in the match is determined at run-time. In addition to standard data

Attributes in the work Entry, there is also a “matchAtt” Attribute with the string value “uid”.

In this case, the following Expressions used in Link Criteria:

{work.matchAtt} EQUALS {work.uid}

Is equivalent to this:

uid EQUALS $uid

Expressions in Branches, Loops and Switch/Case

The list of Expression objects here is similar to that for Link Criteria:

 Table 5.

Object Value

config The component’s Interface configuration object.

mc The MetamergeConfig object of the config instance

(config.getMetamergeConfig())

work The work Entry of the AssemblyLine

task The AssemblyLine

alcomponent The Branch/Loop component

You have can use Expressions for both the Attribute Name and the Operand of a Condition.

You can also use Expressions to configure Switch and Case components.

Scripting with Expressions

You can also use Expression directly from JavaScript code. Here is an example that builds an

expression using the new ParameterSubstitution class:

var ps = new com.ibm.di.util.ParameterSubstitution("{work.FullName} -> {work.uid}");

map = new java.util.HashMap();

map.put("mc", main.getMetamergeConfig());

map.put("work", work);

task.logmsg(ps.substitute(map));

Resulting in the following log messages when run for several iterations in the test

AssemblyLine:

116 IBM Tivoli Directory Integrator 6.1: Users Guide

14:35:29 Patricia L Adowski -> adowski

14:35:29 Gerard C Agocha -> agocha

14:35:29 Jose M Agudelo -> jagudelo

14:35:29 Alfredo Aguirre -> aguirr

14:35:29 Shahid Ahmad -> sahmad

14:35:29 Kevin L Ahuna -> ahunakl

Secure Sockets Layer support

The IBM Tivoli Directory Integrator Server has the ability to have secure communication with

those directories supporting Secure Sockets Layer (SSL) security protocol.

The following Connectors and EventHandlers support SSL with properly configured IBM

Tivoli Directory Integrator Servers:

v Connectors

– JMS Connector

– LDAP Connector

– LDAP Server Connector

– Netscape/iPlanet LDAP ChangeLog Connector

– IBM Directory Server ChangeLog Connector

– Active Directory ChangeLog Connector

– Lotus® Notes Connector

– Axis Easy Web Service Server Connector

– Web Service Receiver Server Connector

– DSMLv2 SOAP Server Connector
v EventHandlers

– Active Directory ChangeLog EventHandler

– DSMLv2 EventHandler

– Exchange ChangeLog EventHandler

– HTTP EventHandler

– LDAP EventHandler

– LDAP Server EventHandler

– IBM Directory Server EventHandler

– Web Service EventHandler

– z/OS® LDAP EventHandler

For more information, see ″Connectors″ and ″EventHandlers″ in the IBM Tivoli Directory

Integrator 6.1: Reference Guide.

Note: keytool is provided as part of JRE. keytool is a Key and Certificate management tool.

For more details, see http://java.sun.com/products/jdk/1.2/docs/tooldocs/solaris/
keytool.html

Chapter 2. IBM Tivoli Directory Integrator concepts 117

Securing the connection between IBM Tivoli Directory Integrator 6.1 and servers

with SSL (IBM Tivoli Directory Integrator as a client)

The following steps are required to enable SSL support for IBM Tivoli Directory Integrator as

a client:

1. Configure a server (such as IBM Tivoli Directory Server) to enable SSL.

2. If the certificate in the server is a self-signed certificate, export the certificate.

3. If you don’t have a Java (jks) keystore file already, create a keystore file using keytool

(root_directory/_jvm/jre/bin, or root_directory/_jvm/bin, depending on your platform) for

IBM Tivoli Directory Integrator.

4. If the server certificate is a self-signed certificate, import the server certificate to the IBM

Tivoli Directory Integrator keystore file as a root authority certificate using keytool.

5. Edit root_directory/global.properties file for the keystore file location, keystore file

password and keystore file type. In the current release, we support jks-type only.

Keystore file information for the server authentication.

It is used to verify the server’s public key.

example

javax.net.ssl.trustStore=d:\test\KeyRings\ibmdi.jks

javax.net.ssl.trustStorePassword=secret

javax.net.ssl.trustStoreType=jks

Keystore file information for the client authentication.

It is used to provide the public key of the

 IBM Tivoli Directory Integrator to the server

 if the server requests the client authentication.

example

javax.net.ssl.keyStore=d:\test\KeyRings\ibmdi.jks

javax.net.ssl.keyStorePassword=secret

javax.net.ssl.keyStoreType=jks

6. Edit root_directory/_jvm/lib/security/java.security for the security provider list.

security.provider.1=com.ibm.jsse.IBMJSSEProvider

security.provider.2=com.ibm.crypto.provider.IBMJCE

security.provider.3=com.ibm.security.jgss.IBMJGSSProvider

security.provider.4=com.ibm.security.cert.IBMCertPath

7. Enable SSL for the Connectors.

8. Restart IBM Tivoli Directory Integrator

Securing the connection between client and IBM Tivoli Directory Integrator 6.1

with SSL (IBM Tivoli Directory Integrator as a server)

The following steps are required to enable SSL support for IBM Tivoli Directory Integrator as

a server:

1. If you don’t have a java (jks) keystore file already in IBM Tivoli Directory Integrator create

a keystore file using keytool (root_directory/_jvm/jre/bin, or (root_directory/_jvm/bin

depending on your platform). If you don’t have a personal key to be used in IBM Tivoli

Directory Integrator get one from a Certificate Authority or create a self-signed key.

2. If the certificate in the IBM Tivoli Directory Integrator is a self-signed certificate, export the

certificate.

118 IBM Tivoli Directory Integrator 6.1: Users Guide

3. If the IBM Tivoli Directory Integrator certificate is a self-signed certificate, using a key tool,

import the exported IBM Tivoli Directory Integrator certificate to the keystore file in the

client as a root authority certificate.

4. Edit root_directory/global.properties file for the keystore file location, keystore file

password and keystore file type. In the current release, we support jks-type only.

Keystore file information for the server

 IBM Tivoli Directory Integrator authentication.

It is used to provide the public key of the IBM Tivoli Directory Integrator

 to the SSL enabled client.

javax.net.ssl.keyStore=D:\test\clientStore.jks

javax.net.ssl.keyStorePassword=secret

javax.net.ssl.keyStoreType=jks

5. Edit root_directory/_jvm/lib/security/java.security for the security provider list.

security.provider.1=com.ibm.jsse.IBMJSSEProvider

security.provider.2=com.ibm.crypto.provider.IBMJCE

security.provider.3=com.ibm.security.jgss.IBMJGSSProvider

security.provider.4=com.ibm.security.cert.IBMCertPath

SSLServerSocketFactory Provider

ssl.ServerSocketFactory.provider=com.ibm.jsse.JSSEServerSocketFactory

6. Enable SSL for the clients (for example, using https in the Web browser).

7. Restart IBM Tivoli Directory Integrator

IBM Tivoli Directory Integrator and Microsoft Active Directory SSL configuration

Do the following to configure SSL for IBM Tivoli Directory Integrator and Microsoft Active

Directory:

1. Install Certificate Services on Windows 2000 Server and an Enterprise Certificate Authority

in the Active Directory Domain. Details are available at http://www.ntfaq.com/Articles/
Index.cfm?ArticleID=14923. Make sure you install an Enterprise Certificate Authority.

2. Start the Certificate Server Service. This creates a virtual directory in Internet Information

Service (IIS) that enables you to distribute certificates.

3. Create a Security (Group) Policy to direct Domain Controllers to get an SSL certificate

from the Certificate Authority (CA).

a. Open the Active Directory Users and Computers Administrative tool.

b. Under the domain, right-click on Domain Controllers.

c. Select Properties.

d. In the Group Policy tab, click to edit the Default Domain Controllers Policy.

e. Go to Computer Configuration–>Windows Settings–>Security Settings–>Public Key

Policies.

f. Right click Automatic Certificate Request Settings.

g. Select New.

h. Select Automatic Certificate Request.

i. Run the wizard. Select the Certificate Template for a Domain Controller.

Chapter 2. IBM Tivoli Directory Integrator concepts 119

j. Select your Enterprise Certificate Authority as the CA. Selecting a third-party CA

works as well.

k. Complete the wizard.

l. All Domain Controllers now automatically request a certificate from the CA, and

support LDAP using SSL on port 636.
4. Retrieve the Certificate Authority Certificate to the machine on which you installed IBM

Tivoli Directory Integrator

Note: You must install IIS before installing the certificate server.

a. Open a Web browser on the machine on which you installed IBM Tivoli Directory

Integrator.

b. Go to http://server_name/certsrv/(where server_nameis the name of the Windows 2000

server). You are asked to log in.

c. Select the task Retrieve the CA certificate or certificate revocation list.

d. Click Next.

e. The next page automatically highlights the CA certificate. Click Download CA

certificate.

f. A new download window opens. Save the file to the hard drive.
5. Create a certificate store using keytool. Use keytool.exe to create the certificate store and

import the CA certificate into this store.

Note: Keytool.exe is located in the IBM Tivoli Directory Integrator directory under

/_jvm/jre/bin
Use the following command:

_jvm\jre\bin\keytool -import -file

 certnew.cer -keystore keystore_name.jks

 -storepass password-alias keyalias_name

For example, assume the following values:

Keystorename = idi.jks

Password = secret

Keyalias name = AD_CA

The command looks like the following:

C:\Program Files\IBM\IBMDirectoryIntegrator>_jvm\jre\bin\keytool -import

-file certnew.cer -keystore idi.jks -storepass secret -alias AD_CA

To verify the contents of your keystore, type the following:

C:\Program Files\IBM\IBMDirectoryIntegrator>_jvm\jre\bin\keytool

 -list -keystore idi.jks -storepass secret

This results in the following:

120 IBM Tivoli Directory Integrator 6.1: Users Guide

Keystore type: jks

Keystore provider: SUN

Your keystore contains 1 entry:

ad_ca, Mon Nov 04 22:11:46 MST 2002, trustedCertEntry,

Certificate fingerprint (MD5): A0:2D:0E:4A:68:34:7F:A0:21:36:78:65:A7:1B:25:55

For more details on keytool, go to http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/
keytool.html

6. Configure IBM Tivoli Directory Integrator to use the keystore created in the previous step.

Edit root_directory/global.properties file for the keystore file location, keystore file

password and keystore file type. In the current release, only jks-type is supported.

#server authentication

#example

javax.net.ssl.trustStore=c::\test\idi.jks

javax.net.ssl.trustStorePassword=secret

javax.net.ssl.trustStoreType=jks

#client authentication

#example

javax.net.ssl.keyStore=c:\test\idi.jks

javax.net.ssl.keyStorePassword=secret

javax.net.ssl.keyStoreType=jks

7. Edit root_directory/_jvm/lib/security/java.security for the security provider list:

security.provider.1=com.ibm.jsse.IBMJSSEProvider

security.provider.2=com.ibm.crypto.provider.IBMJCE

security.provider.3=com.ibm.security.jgss.IBMJGSSProvider

security.provider.4=com.ibm.security.cert.IBMCertPath

8. Enable SSL for your LDAP connector.

a. Go to the JLDAP Connector or LDAP Connector configuration panel.

b. Change LDAP URL to port 636.

c. Check Use SSL.
9. Restart IBM Tivoli Directory Integrator.

Obtaining a secure JDBC connection in an IBM Tivoli Directory Integrator 6.1

AssemblyLine using IDS Server

A secure JDBC connection can be obtained using the IBM Tivoli Directory Integrator JDBC

connector and IDS Server software. The IDS Server software intercepts specific parameters on

the JDBC URL that tell the software how to handle the underlying connection.

The Secure dbAccess option enables the IDS Server JDBC Driver to use the SSL protocol to

establish a secure network connection to IDS Server. The SSL protocol supports many

combinations of public-key digital signatures, key exchange protocols and symmetric ciphers.

These combinations are also called cipher-suites. The IDS Server documentation states that the

specification of cipher-suites supported by IDS Server is the following:

Key Agreement

RSA or Diffie-Hellman

Chapter 2. IBM Tivoli Directory Integrator concepts 121

Digital Signature

RSA or ElGamal

Symmetric Ciphers

v 56-bit DES

v 112-bit Triple DES

v 40-bit DES

v 128-bit Blowfish

Message Digest

SHA-1

IDS Server

To learn more about the capabilities of IDS Server, do the following:

1. Install the IDS Server package. A 30-day-trial software is available at http://
www.idssoftware.com.

Note: The trial software is IDS Server Lite and does not include the support for SSL. You

must download the IDS Server 4.0 (Export) Evaluation version to get SSL support.

2. Read the IDS Server User’s Guide (Userguid.doc) provided with the trial software install.

The following sections are of particular relevance to the approach documented in this

paper:

v ″4.4 Connection URL″

v ″4.5 Using IDS Server JDBC Driver″

v ″5. Secure dbAccess″

Since IBM Tivoli Directory Integrator 6.1 uses JDK v 1.4.1, copy jdk14drv.jar from the

IDS_root_directory\classes directory to the Integrator_root_directory\jars directory. IDS Server

provides other driver jars for compatibility with other versions of JDK and might be

applicable for future releases of IBM Tivoli Directory Integrator.

3. Update the idss.ini file of the IDS Server to match requirements of your installation. If you

want to run the sample configuration discussed in this paper, you must utilize the sample

data provided with the IDS Server trial package (IDSExamples.mdb).

4. In this example configuration, update the idss.ini file so it appears as follows (only partial

file contents shown, modified attributes notated in bold font):

[General]

Port = 12 ;default 80 if not specified

Address = 0 ;0:bind to all address, or specify one IP address

ListenBacklog = 64 ;

DefSessionTime = 20 ;minutes

DatabaseIdleTime = 10 ;minutes

DBLoginTimeout = 45 ;seconds, 0 < DBLoginTimeout < 600 (10 min)

Hosts = deny ;deny or grant

DefMaxFieldSize = 16 ;kbytes, 1 < DefMaxFieldSize <= 1024 (1 meg)

AccessLog = 0 ;0:none, 1:daily, 2:weekly, 3:monthly, 4:quarterly

KeepAliveTimeout = 15 ;seconds, 0 < KeepAliveTimeout < DefSessionTime*60

122 IBM Tivoli Directory Integrator 6.1: Users Guide

TunnelKeepAlive = 1 ;0:disable, 1:enable

DefaultDBMS = odbc ;odbc, oracle, sybase, sqlserver

CustomDSNOnly = 0 ;0:use custom and system dsn, 1:use custom dsn only

SecureJDBCOnly = 0 ;0 or 1, applicable to .NET clients as well

DefaultDSN = IDSExamples

[dsn=IDSExamples]

dbms=odbc

dsn=IDSExamples

uid=

pwd=

ssl=

shield=

[Alias]

/classes/=./classes/

Note: Any changes to the .ini file do not take effect until the services are restarted.

5. See ″5.3.2 idsskey.exe″ in IDS Server User’s Guide, and run idsskey.exe, a command line

program that generates the IDS Server public/private key pair and other cryptography

data files.

idsskey options modulus_size

Note: idsskey 512 creates the files necessary for this example.

6. Compile the resulting java file IDSServerPublicKey.java:

C:\IDSServer\Security>javac IDSServerPublicKey.java

7. Copy the resulting IDSServerPublicKey.class to the client machine where IBM Tivoli

Directory Integrator is installed. Place in the jars directory.

Using IBM Tivoli Directory Integrator JDBC connector to access IDS Server

1. Update ibmditk.bat in the root_directory directory so that the MYCLASSPATH statement

ends with ;jars. This enables the IBM Tivoli Directory Integrator AssemblyLine to find the

public key to perform the SSL handshake.

2. Start IBM Tivoli Directory Integrator.

3. Add a new AssemblyLine.

4. Add a new JDBC Connector. Give it a name of your choice, and put it in Iterator mode.

5. Configure this new Connector:

JDBC URL

jdbc:ids://localhost:12/conn?dsn=’IDSExamples’ &ssl=1

JDBC Driver

ids.sql.IDSDriver

Table Name

departments
6. Run AssemblyLine. You see the following result:

Chapter 2. IBM Tivoli Directory Integrator concepts 123

15:27:29 BEGIN Initialize connectors

15:27:29 Initializing Component jdbc-idss

15:27:30 END Initialize connectors

15:27:30 No script for the Prolog after initialization of Connectors

15:27:30 BEGIN Iteration

15:27:30 Interval=0, MaxErrors=0, MaxRead=0

15:27:30 END Iteration

15:27:30 BEGIN Exit TaskCallBlock

15:27:30 END Exit TaskCallBlock

15:27:30 BEGIN Connector Statistics

15:27:30 [jdbc-idss] Get:4

15:27:30 Total: Get:4

15:27:30 END Connector Statistics

15:27:30 No script for the Epilog

15:27:30 terminated successfully (0 errors)

15:27:30 AssemblyLine AssemblyLines/al1 terminated successfully

15:27:30 Exit after auto-run requested

Process exit code = 2

Enabling SSL

To enable IDS Server JDBC Driver to use Secure dbAccess, add the parameter ssl=1 to the

Connection URL. With this parameter the driver will attempt to connect to IDS Server using

the SSL protocol. If the connection is granted, the driver will start normal JDBC operation,

and data exchanged thereafter, including the password in the Connection URL, is protected.

Be sure to use the ampersand (&) to delimit this parameter from the others. For example:

jdbc:ids://localhost:12/conn?dsn=’IDSExamples’&ssl=1

More specifically, the ssl= parameter specifies a value of 0, 1 or k indicating whether to

enable Secure dbAccess to protected the network connection between IDS Server JDBC Driver

and IDS Server using the Secure Socket Layer (SSL) protocol. The default setting is ssl=0,

which disables SSL. Setting ssl=1 enables public-key Secure dbAccess. Setting ssl=k enables

secret key Secure dbAccess. Refer to IDS Server User’s Guide, chapters 5 (″Secure dbAccess″)

and 6 (″Secret Key Secure dbAccess″) for details on how to use Secure dbAccess in IDSJDBC

Driver.

Summary

IDS Server provides a method to obtain a secure JDBC connection using the standard IBM

Tivoli Directory Integrator JDBC Connector. This is possible by specifying specific parameters

that are intercepted by the IDS Server and used to provide non-SSL(default), public-key

Secure dbAccess and secret key Secure dbAccess.

Obtaining a secure JDBC connection in an IBM Tivoli Directory Integrator 6.1

AssemblyLine using NetDirect JDataConnect

A secure JDBC connection can be obtained using the IBM Tivoli Directory Integrator JDBC

connector and NetDirect JDataConnect software. The JDataConnect software receives specific

parameters as properties on the JDBC Connector’s DriverManager getConnection call. The

properties indicate to JDataConnect to use an SSL connection, if necessary.

124 IBM Tivoli Directory Integrator 6.1: Users Guide

An SSL parameter set to 1 enables the JDataConnect to use the SSL protocol to establish a

secure network connection to JDataGateway. JDataConnect supports Netscape’s latest version

of SSL (version 3). JDataConnect utilizes the cryptography support already built into the host

browser, so driver size remains small. Other JDBC SSL implementations require that the

driver size be greatly increased to include algorithms required for SSL cryptography and key

exchange. These drivers can therefore take a long time to download over low bandwidth

connections.

JDataConnect can use patented cryptography and key exchange algorithms because the host

browser licenses them already.

NetDirect JDataConnect Software

To learn more about the capabilities of JDataConnect, do the following:

1. Install the trial software package. A 30-day-trial software is available at

http://www.j-netdirect.com/Downloads.html.

Note: The trial software includes the support for SSL.

2. Read the JDataConnect Documentation Index (DocumentationIndex.html) provided with the

trial software install. Since IBM Tivoli Directory Integrator 6.1 uses JRE v 1.4.2, copy

JData1_2.jar from NetDirect_home_directory\JARs directory to Integrator_root_directory\jars

directory. NetDirect provides other driver jars for compatiblilty with other versions of JDK

and might be applicable for future releases of IBM Tivoli Directory Integrator.

3. The following example assumes DB2 is installed along with Samples database.

Using IBM Tivoli Directory Integrator JDBC connector to access JDataConnect

1. Start IBM Tivoli Directory Integrator.

2. Add a new AssemblyLine.

3. Add a new JDBC Connector. Give it a name of your choice, and put it in Iterator mode.

4. Configure this new Connector:

JDBC URL

jdbc:JDataConnect://9.27.132.199/sample

 Specify Username and Password for DB2.

JDBC Driver

JData1_2.sql.$Driver

Table Name

EMPLOYEE
5. In the Hooks tab of the Connector, add the following code to tell the Connector to do a

Before Initialization script:

jdirect.connector.setParam ("jdbcUseProperties","true");

jdirect.connector.setParam ("jdbc.ssl",1);

6. Run the AssemblyLine. The verification of the ssl connection is done by looking at the

trace output on the server. To set up for trace on the server, run JDataAdmin.exe (located

Chapter 2. IBM Tivoli Directory Integrator concepts 125

in Program Files\NetDirect\JDataConnect\JDataAdmin folder). Perform the setup, and

recycle the server before running the IBM Tivoli Directory Integrator AssemblyLine. The

results in trace file look like the following:

2003-07-21 10.51.04:46 Created a new connection in slot 1, SSL V3

2003-07-21 10.51.04:93 Connection 1 connected to sample

2003-07-21 10.51.04:125 Metadata request: getColumns

2003-07-21 10.51.04:265 SELECT * FROM EMPLOYEE

2003-07-21 10.51.12:562 Disconnected connection 1 from data source

Summary

JDataConnect provides a method to obtain a secure JDBC connection using he standard IBM

Tivoli Directory Integrator JDBC connector. This is possible by specifying specific parameters

that are intercepted by the software and used to provide SSL access.

126 IBM Tivoli Directory Integrator 6.1: Users Guide

Chapter 3. The Config Editor

Config Editor Interface

This section describes the menu items and windows of the IBM Tivoli Directory Integrator

Graphical User Interface (GUI): the Config Editor.How to work with the concepts the Config

Editor visualizes is explained in “Using the Config Editor” on page 134.

Main panel

When you start the IBM Tivoli Directory Integrator Config Editor, either from your system’s

launch interface or from the command line with the ibmditk command you will see the Main

Panel.

In the default layout, using the Cards layout, the left navigation pane provides a tree view of

the current configuration, as well as all the current AssemblyLines, EventHandlers,

Connectors, and so forth.

The buttons in the button bar at the top of the main panel, from left to right, are:

Create a new configuration root

Enables you to create a new configuration.

Open an existing configuration

Enables you to open one or more configuration files you have already created and

saved.

Save selected configuration

Enables you to save your configuration without closing it.

Show/Hide the Config Browser

This closes the left navigation pane, also known as the Config Browser.

Previous tab/window

Enables you to navigate through already open panes, for example, AssemblyLines,

EventHandlers, Connectors, and so forth. Greyed out if there are no open panes to

show.

Next tab/window

Enables you to navigate through already open panes, for example, AssemblyLines,

EventHandlers, Connectors, and so forth. Greyed out if there are no open panes to

show.

Help for this panel

This help page.

© Copyright IBM Corp. 2003,2006 127

Solution Directory

IBM Tivoli Directory Integrator allows you to specify the Solution Directory that it is to use.

This affects relative paths through your Config, and is also where a number of special

property files and sub-directories are expected by the Server. You will be asked to set this

value during installation. The options presented are:

Do not specify. Use current working directory at startup time

If this selection is made, no Solution Directory will be set. As a result, the base path

will be wherever you happen to start the system from. Since the Server (and CE) will

expect the presence of property files and support sub-directories, startup may fail

depending on the current directory path.

Use a TDI sub-directory under my home directory

A ″TDI″ sub-directory will be created under your home directory if it does not already

exist. This is the default setting and the preferred method for organizing your TDI

solutions.

Use the Install Directory

This is the backwards-compatibility choice, since previous versions of TDI assumed

that relative paths in your Configs where based from the installation directory.

Select a directory to use

This choice allows you to specify any directory where you have write access.

Note that if you select any other directory than the installation directory, property files and

necessary sub-folders will be created and maintained there for you.

The Solution Directory can be specified when you start either the CE or Server with the –s

parameter. If the CE is started with the –s parameter, it checks to see if this directory the

necessary solution files and directories are in place. If any of these are missing (e.g. this is the

first time you are using a new Solutions Directory) then the system will then prompt you to

confirm that the specified directory is correct, terminating if you answer ″No″. If you confirm

the Solution Directory, TDI will copy in the necessary solution info from the TDI installation

directory and use it for this session. The Server will not make these preparations for you, and

will instead fail with error messages if you attempt to use an unprepared Solutions Directory.

Files in the Solution Directory include:

solution.properties

This is usually a copy of the global.properties file, tailored for your own

solution-specific needs. If the Solution Directory does not contain this file, a copy of

global.properties is placed there by the Config Editor (unless the Solution Directory

is equal to the installation directory.)

log4j.properties

A copy of the default log strategy configuration file log4j.properties. Refer to “Logging

and debugging” on page 167 for more information.

128 IBM Tivoli Directory Integrator 6.1: Users Guide

idisrv.sth

A ″stash″ file for your solution. Refer to the "Security and TDI" chapter in the IBM

Tivoli Directory Integrator 6.1: Administrator Guide.

serverapi

A directory containing configuration files related to the Server API; refer to the

"Server API" chapter in IBM Tivoli Directory Integrator 6.1: Administrator Guide.

Java Libraries

IBM Tivoli Directory Integrator enables you to layer new functionality on top of the server by

including your own Java libraries.

This is done by selecting the JavaLibraries folder in the Config browser. The system presents

you with a list of included libraries.

JavaLibraries can only be created and removed by using the toolbar in the Details Pane title

area.

Once you have created a new Java Library entry, simply click in the grid field that you want

to edit and press F2. Alternatively, you can double-click the field to enter edit mode. Fill out

the following fields:

Name This is the name of the object that is made available to your scripts, and which

provides you access to the library’s functions.

Value Here you enter the name of the Java class that is tied to this new script object.

Note: In order to be able to include new Java libraries, you must place the library’s jar files in

either the .jars sub-directory of the IBM Tivoli Directory Integrator installation

directory, or in an existing or new sub-directory under .jars.
For more information, see “Java Libraries” on page 196

Java Properties

The Java Properties is a section of the configuration file where you specify a list of properties

and their associated values. The properties are added to the Java runtime properties so you

can change or add Java-specific or other third party-specific properties here. Also, you find

IBM Tivoli Directory Integrator properties that fine tune the way IBM Tivoli Directory

Integrator Server (ibmdisrv) and Config Editor (ibmditk) behaves.

These values are part of your configuration file and might be different from file to file. You

cannot include these values. If you want these values to be global for your installation, you

can set them in the global.properties file.

Your user preferences (for the Config Editor) are stored in the .ibmdi file that you find in

your home directory. This file is created for you the first time you start ibmditk.

For more information, see “Preferences” on page 198

Chapter 3. The Config Editor 129

Includes

A Config can be set up to include configuration elements from other Configs. This makes it

possible to set up central libraries of components, scripts and other Config elements that can

be stored on corporate servers, but still available to integration specialists working through

the organization.

You create and manage your Includes as you do other Config items like Connectors and

AssemblyLines.

The only available option at this point is the Config Driver parameter. Select the

Configuration Storage Architecture (CSA) driver that you must use to reach this Config.

There are only two choices at present:

v Pre-5.1.1 legacy .cfg format

v XML

Note: The .cfg format is supported as read-only and for legacy reasons. It is recommended

that you use the XML format for storing Config information to file.

Once you have chosen the Config driver, you are presented with more parameters. Now you

can set the filename or URL to the Config file, as well as the decryption password (if one is in

use). You can have as many Includes as you want in your Config. These can be stored in

various ways. They can be accessed through the different Config drivers.

For more information, see “Includes” on page 198

Properties

The Properties window lets you manage both the standard Property Stores (Global, User and

Java), as well as the System Property Store and any user-defined that you create for your

solution. User-defined Property Stores are typically used to store sensitive information outside

your Config in a secure format, but still keep it configurable.

Think of these user-defined Properties as global system variables that can be used throughout

your solution. Of course you can access Properties from your scripts, enabling you to make

your code data-driven, changing its functionality based on the value of one or more of these

properties. However, the one powerful use for Properties is as parameter values in the

configuration of components, like Connectors, Parsers and Functions, or as part of Expressions

that can be used to define everything from Link Criteria to Attribute Maps.

For more information, see “Properties” on page 200 and “Expressions” on page 111

System Store

The System Store provides persistent storage of Entry objects and other state information for

IBM Tivoli Directory Integrator solutions. The default version of the system store uses

CloudScape as its underlying storage technology; other database systems like IBM DB2 can be

used as well as databases accessible through a JDBC driver.

130 IBM Tivoli Directory Integrator 6.1: Users Guide

The System Store can be shared by multiple instances of IBM Tivoli Directory Integrator

servers if the CloudScape database runs as a server, or if another multi-user database system

is used. If CloudScape runs embedded in an IBM Tivoli Directory Integrator server, it cannot

be shared simultaneously with other servers.

The System Store implements three types of storage for TDI components:

The Property Store

The Property Store is a simple keyed table with associated Java objects designed for

use by user script code. The Java object must be serializable. A default property store

is made available through additional system object methods and by direct access to

the Store Factory.

Delta Store

The Delta Store holds the keyed tables that are used by selected Connectors in Iterator

mode, with Delta support enabled. Delta Objects are only stored in the Delta Store if a

storage method other than Btree Objects is selected.

Checkpoint/Restart Store

The Checkpoint/Restart Store consists of a number of classes that aid the

AssemblyLine and other components to implement Checkpoint/Restart.

For more information, see “System Store” on page 82

Preferences

The behavior of the Config Editor can be tailored to a certain extent, by means of a number of

settings in the File->Edit Preferences ... dialog. Sub-panels in the Preferences dialog are:

v “File Settings”

v “Editor Settings” on page 132

v “Appearance” on page 132

v “Misc Settings” on page 133

The settings are described in more detail below.

File Settings

This panel has the following parameters for you to set:

Max Recently Used Files

The maximum number of recently used files to display.

Current Recently Used Files

You can edit the files you want to display in the File->Recent option from the main

menu.

Auto-load Files

You can list files that load automatically when you open IBM Tivoli Directory

Integrator.

Chapter 3. The Config Editor 131

Editor Settings

In this panel you can change the settings of the internal script editor in the Config Editor, or

point to an external editor. Options are:

Editor Font

The font used by the internal script editor.

Max undo levels

The maximum number of Undo operations you can perform on the internal edit

buffer. A very high number may cause memory problems; the default is 100.

External editor

The command line to invoke an external editor executable to use instead of the

internal editor.

Note: For UNIX systems, the following restriction exists:

Make sure that an editor window is displayed. The editor can be, for example,

xterm -e vi or emacs or anything else that displays a window.

Wait & paste from external editor

Checking this box (which is on by default) causes the external editor to be run

synchronously — that is, the Config Editor waits for the external editor to finish. After

that, the results of the external edit session are pasted back into the script buffer you

were editing. Conversely, if this box is not checked, the external editor is started

asynchronously with the current contents of the script buffer, but the results of the

external editor are not applied back.

Confirm before update

Waits for an OK before updating local buffer (only when this option is checked).

Appearance

The Appearance tab has four sub-tabs. Under General, there are the following parameters that

you can set:

View Type

Defines the look of the Interface. Options are Tabbed, Cards, and Frames.

Tabbed Browser

When checked, will show different Config Files as stacked tabs instead of serially in

the Config Browser.

Show Toolbar

When checked, enables the toolbar to be shown.

Show Status bar

When checked, enables the status bar to be shown.

Meta Look

Provides a legacy look to the Interface, providing a white and orange ribbon at the

top of the Interface.

132 IBM Tivoli Directory Integrator 6.1: Users Guide

Under the Look & Feel sub-tab, you will find the following parameters that you can set:

Look & Feel

Provides a specific style to the Interface. Options are platform-dependent, on

Windows they are Metal, CDE/Motif, and Windows.

Metal Theme

Specifies a Theme for the Metal Look & Feel option (see previous). Currently, the only

choice is com.ibm.di.admin.ProductTheme.

The Theme Settings sub-tab has the following parameters you can set:

Menu Font

Change the font that appears in menus. This text is provided by the product.

UserText Font

Change the font of text provided by the user.

Controls Font

Changes the font of names of menu options.

SubControls Font

Changes the font of sub-menu options.

WindowTitle Font

Changes the font of window titles.

Note: To determine the combination that appeals to you the most, you will need to

experiment with these settings.

The Theme Colors sub-tab has the following parameters you can set:

Primary 1 - 3

Optional primary colors for the Interface.

Secondary 1 - 3

Optional secondary colors for the Interface.

Default colors

Select to enable the default colors that are part of the Interface.

Note: To determine the combination that appeals to you the most, you will need to

experiment with these settings.

Misc Settings

The Miscellaneous settings tab has the following parameters you can set:

ExecuteTask Lines

Number of lines displayed in execute task window (the window that opens when you

run an AssemblyLine from the Config Editor).

Chapter 3. The Config Editor 133

Internet browser

Choose the browser you want to use to display help files.

Resources

A simpler method for sharing AssemblyLines and components is provided by the TDI

Resource library. The Resources tab appears just below the Config Brower.

The resources in the Resources tab reflect a directory structure located at the path specified in

the Solution or Global Property by the com.ibm.di.admin.library.dir property. By default,

this is set to “<User Home>/tidlibrary”, but can be reassigned to point to any other folder,

including shared space on a network disk.

ALs and components can be dragged between the Config Browser and Resources. However

this works the same as dragging between multiple Configs open in the Config Editor: you

only get the items you drag-and-drop. So if you drag an AssemblyLine to Resources (or to

another open Config), it won’t bring along any Library components that are being inherited

from. The answer to this dilemma is the new AssemblyLine Package Publishing feature. See

“Packaging, Library and Reports” on page 147 for more information.

Using the Config Editor

Open an item in the Config Browser by clicking it. If the item is a folder, it reveals the items

enclosed, otherwise it opens the item. If there are no items in the folder, then you must only

click once on the folder (double-clicking a standard folder causes you to try to rename the

folder, which you cannot do). Folders are distinguished from items by the open/close widget.

You can also open an item by selecting Object–>Open item selection from the Main Panel

menu, or right-click a folder (for example, Connectors) and select New Connector

134 IBM Tivoli Directory Integrator 6.1: Users Guide

You can rename an object in the Config Browser by selecting it and pressing F2. Alternatively,

you can double-click the item. This allows the item to be renamed.

Note: You cannot rename standard folders.

If you open an item in the Config Browser, then the Details Pane is filled with information for

that object. This is called a Details Window.

Each Details Window has its own toolbar providing quick access to relevant features for the

type of object displayed (in fact, IBM Tivoli Directory Integrator has a number of toolbars,

each tied to a particular window or List Control). Common for all Details Window toolbars is

the Close button, which is displayed at the right side of the toolbar.

Chapter 3. The Config Editor 135

List controls

This image shows AssemblyLine details. In the left part of the Details Pane you sometimes

find a List Control. Each List Control has a toolbar associated with it, usually found below or

above the List Control itself.

In order to view the details of an item in a list, simply click the item to select it. Most List

Controls support multiple selections (Ctrl + mouse-click, Shift + mouse-click or Shift + arrow

keys).

If you want to rename an item in a List Control, you can enter edit mode by pressing F2.

Some List Controls, such as those for AttributeMaps, enable you to double-click the item to

edit, or simply to start typing.

136 IBM Tivoli Directory Integrator 6.1: Users Guide

Tab controls

Along the top of the various sections of information in the Details Pane are a set of tab

controls, as in the following screenshot:

Keyboard controls

IBM Tivoli Directory Integrator has several Look & Feel options:

v Metal

v CDE/Motif

v Windows

Do the following to access the Look & Feel option:

1. Click File>Edit Preferences.

2. Click Appearance tab.

3. Click Look & Feel tab.

4. Click Look & Feel drop-down box.

5. Select a Look & Feel.

6. Click OK.

To see the keymaps for these Look & Feel options, go to the following URLs:

Metal http://java.sun.com/j2se/1.4/docs/api/javax/swing/doc-files/Key-Metal.html

CDE/Motif

http://java.sun.com/j2se/1.4/docs/api/javax/swing/doc-files/Key-Motif.html

Windows

http://java.sun.com/j2se/1.4/docs/api/javax/swing/doc-files/Key-Win32.html

Note: In some fields where the Tab key itself is a legal character, use Ctrl+Tab to shift focus.

Moving between details windows

The Details Window tabs are displayed as you open objects in the Config Browser. You can

change focus from one object to another by doing any of the following:

v Select another object in the Config Browser.

v Click the desired Details Window tab.

v Use the Previous Tab/Window and Next Tab/Window buttons in the Main Panel toolbar.

Chapter 3. The Config Editor 137

v Open the Window List dialog (click Window>Show/Hide Windows list from the Main

Menu).

 Simply click the desired window in order to make it active in the Details Pane.

Main menu selections

File

Most of the options in the File menu are also available in the toolbar in the “Main panel” on

page 127.

New ...

Creates a new Config. Shortcut: Alt-F N

Open ...

Opens an existing Config. Shortcut: Alt-F O

Close Closes selected Config.

Save Saves selected Config. Shortcut: Ctrl-S and Alt-F N

Save As ...

Renames and saves selected Config. Shortcut: Alt-F A

Save All

Saves copy of selected Config to new name.

Recent

Opens a recently accessed Config.

Edit Preferences

For setting user and system preferences.

Quit Exits IBM Tivoli Directory Integrator.

138 IBM Tivoli Directory Integrator 6.1: Users Guide

When editing Config files on a Remote server, you need to make sure that the communication

between the local Config Editor and the Remote server is set up correctly; see the ″Remote

Server″ chapter in IBM Tivoli Directory Integrator 6.1: Administrator Guide for more information.

A remote server must be running on the specified IP and port and the path entered must exist

and must be writable. The Config Editor will then create a Config file with default folders

and save it on the remote server. It also maintains a temporary local copy of the file, , and

loads it in the Config Editor in the format <IP>_<port>_<filename>.

Object

Most of the options on the Object menu are also available as context-sensitive options on the

objects in the Config Browser. Right-click on an object to see the context-sensitive menu.

New AssemblyLine ...

Creates new AssemblyLine in AssemblyLines folder.

New EventHandler ...

Creates new EventHandler in EventHandlers folder.

New Connector ...

Creates new Connector in Connectors folder.

New Parser ...

Creates new Parser in Parsers folder.

New Script ...

Creates new Script in Scripts folder.

New Include ...

Creates new Include (file reference) in Includes folder.

New Function ...

Creates new Function Component in the Functions folder.

New Attribute Map ...

Creates a new, independent Attribute Map in the AttributeMaps folder.

New external property file ...

Creates a new entry for an external properties file in the ExternalProperties folder.

Open Item

Opens selected object (Connector, AssemblyLine, and so forth).

Delete Item

Deletes selected items.

Rename

Allows you to rename the selected item.

Clone Copies the selected item, and prompts for the name of the new item. This is a

convenient way to copy an item in the same place in the hierarchy, as opposed to a

copy-and-paste operation.

Chapter 3. The Config Editor 139

Config Report

Initiates an HTML-format report, based upon an XSL StyleSheet, about the selected

object. You will be asked to provide the StyleSheet, or choose from a pre-defined

template.

 You can also use standard Copy, Cut and Paste operations from the Object menu to

manipulate Config elements; see “Copying elements between open Configs (or folders)” on

page 145.

Store

Manage System Stores

This selection allows you to define one or more set of System Store settings, which

can then be referenced and used by Configs. See “System Store” on page 82.

View System Store

Allows you to open, view and delete System Store tables.

Network Server Settings

For configuring and managing the settings for System Stores that utilize networked

instances of Cloudscape.

Remote

A remote server can be started by executing the ibmdisrv script on the remote machine with

the -d option. The interface and functionality of the remote server prevents simultaneous

access to Configs.

All actions related to remote configurations are located under the Remote menu:

Note: Refer to the ″Remote Server″ chapter in the IBM Tivoli Directory Integrator 6.1:

Administrator Guide for more information as to how to configure a Remote Server.

New Remote

Creates a new configuration on a Remote TDI Server, immediately locks that

configuration for editing and starts a temporary Config Instance on the Server. This

will prompt for the IP address, port and relative path of the Config to created on the

Remote Server.

Open Remote

Loads a configuration for editing on a Remote TDI Server, locks that configuration

and starts a temporary Config Instance on the Server. This will prompt for the IP

address and port of the remote server, and a password if the Config you select is

password protected.

Save Saves the configuration on the Remote Server, but keeps the lock on the configuration

so that it can still be edited and keeps the temporary Config Instance running on the

Server.

Save Local Copy

Saves a copy of the remote configuration on the local Config Editor machine. The

140 IBM Tivoli Directory Integrator 6.1: Users Guide

configuration is not saved on the Remote Server, the lock is not released and the

Config Instance on the Remote Server is not stopped. The user in the Config Editor

continues to work with the remote configuration and not with the locally saved copy.

Save and Close

Saves the configuration on the Remote Server, releases the lock on the configuration

and stops the temporary Config Instance on the Server.

Close Closes the remote configuration in the Config Editor, releases the lock on the

configuration on the Remote Server and stops the temporary Config Instance.

Window

Next Window

Displays next tabbed window in Details Pane.

Previous Window

Displays previous tabbed window in Details Pane.

Close Closes current tabbed window in Details Pane.

Close All

Closes all tabbed windows in Details Pane.

Show/Hide Window list

Toggles visibility of the window list.

Tools

Key Manager

Starts the certificate tool IKeyman.

Edit Solution Properties

Launch an editor window with the currently active Solution Properties file. If your

Solution Directory is the installation directory, this will be the global.properties file.

 The Tools menu is configurable. By default, it contains the entry for the IKeyman tool, but by

modifying the properties file ibmditk-plugins.properties (located in the installation

directory) you can add items to the Tools menu.

In this file, the ToolsMenu block contains a list of comma separated names. Each name in this

list has four properties suffixed .label, .tooltip, .params and .javaclass that defines the Label,

Tooltip, action parameters and the Java class that performs an action when the menu item is

activated. The format is:

ToolsMenu=Sample

Sample.label=MenuItemLabel

Sample.tooltip=Menu Item tooltip / description

Sample.javaclass=javax.swing.Action class

Sample.params.<parameters required by the action class>

Chapter 3. The Config Editor 141

The default value for .javaclass is com.ibm.di.action.ShellAction, which executes a

command line on the local system. The ShellAction class uses the commandline parameter as

its execution path. The sample below defines a menu item labeled IBM that opens

http://www.ibm.com in a browser (on Windows):

ToolsMenu=GotoIBM

GotoIBM.label:IBM Home Page

GotoIBM.tooltip:Goto http://www.ibm.com

GotoIBM.params.commandline:explorer.exe http://www.ibm.com

Help

Online Help is not contained within the IBM Tivoli Directory Integrator binaries, but is

retrieved from an IBM Eclipse-based Infocenter10, either running locally on your workstation

or on a server somewhere on the network. See the section on ″Installing local Help″ under the

installation instructions in the IBM Tivoli Directory Integrator 6.1: Administrator Guide for more

information.

Help Initial online help information about the Main panel.

About IBM Tivoli Directory Integrator

Displays version information.

About IBM Tivoli Directory Integrator Components

Displays version information about all the Components that are part of the IBM Tivoli

Directory Integrator.

About Remote IBM Tivoli Directory Integrator Components

Displays version information about all the Components that are part of the Remote

IBM Tivoli Directory Integrator Server instance you specify.

Low Level API

Launches a Web browser with the IBM Tivoli Directory Integrator Javadocs

documentation main page.

Newsgroup

Launches your default Network News Transfer Protocol (NNTP) news reader to the

TDI community newsgroup.

Script editor windows

Script Editor windows are found any place where you can enter script, for example,

Prologs/Epilogs, Hooks, Advanced Attribute Mapping, and so forth.

10. The help system is powered by Eclipse technology. (http://www.eclipse.org)

142 IBM Tivoli Directory Integrator 6.1: Users Guide

http://www.eclipse.org

This image is from an AssemblyLine After Getnext (in an Iterator connector).

Script editor windows operate as simple text editors, with support for the standard Cut

(Ctrl+X), Copy (Ctrl+C) and Paste (Ctrl+V) shortcuts. These commands are also available as

buttons of the Script Editor toolbar.

The next two buttons are for Undo and Redo, followed by another set of buttons for Find

and Find Again. The Toggle line wrap in editor button toggles line-wrap in the editor.

The Edit buffer with external editor button launches an external editor for script editing. The

choice of external editor is set in the Edit–> Preferences selection from the Main Menu (the

Editor tab).

Note: The tabs Theme Settings and Theme Colors are available if the Look & Feel tab has

Metal selected as the theme. Do the following:

1. Click File–>Edit Preferences.

2. Click Appearance tab.

3. Click Look & Feel tab.

Chapter 3. The Config Editor 143

4. Click Look & Feel drop-down box.

5. Select Metal.

6. Click OK.

7. Go back to the Appearances tab. You can now change the theme and color settings

in the Theme Settings and Theme Colors tabs.

Currently, the only theme available is the Product Theme.

Configurations (Config)

A Config is a description of an Integration implementation that both the Config Editor and

the server read and work with. Configs are shown in the Config Browser at the left side of

the IBM Tivoli Directory Integrator Config Editor.

When you create a new Config, IBM Tivoli Directory Integrator creates a default set of folders.

These folders cannot be deleted or renamed. Furthermore, you are not enabled to create other

folders at this level. Instead, you are able to create sub-folders to these main Config divisions,

enabling you to organize your Connectors, Parsers, AssemblyLines and other Config items

into logical groups.

Notes:

1. This part of the screen can be hidden or shown by clicking the Config browser button in

the main toolbar. This button looks like two arrows, pointing in opposite directions.

144 IBM Tivoli Directory Integrator 6.1: Users Guide

2. The Config Browser is a hierarchical tree-view browser, so you might not be seeing all

elements in a Config. For more information, see “Config folder management” on page 146.

Creating a new Config

v Go to File–>New

v Click Create a new configuration root button in the main toolbar

Each of these methods results in the Select Configuration Driver dialog where you can choose

to have your Config stored in XML format. For IBM Tivoli Directory Integrator legacy 4.x

format configs cannot be created, but they can be read.

Once you have made this selection, you must then enter the filepath for this new Config.

You can choose to encrypt the Config file by entering an encryption password.

Note: If you enter the filename of an existing file, you will be asked to confirm if you want to

overwrite the old file.

Opening an existing Config

v Go to File–>Open

v Go to File–>Recent (only available for recently opened Configs).

v Click Open an existing configuration button in the main toolbar.

Choose the Config you want to open. The Config is displayed in the left navigation panel.

Saving a Config

v Go to File>Save.

v Click Save selected configuration button in the main toolbar.

This saves the currently open Config.

Renaming a Config

v Go to File>Save As ...

Give the Config a new name in the Save As ... panel. This creates a copy of your original

Config, but with the new name. Both the new and original Configs are present in the Config

Browser.

Closing a Config

v Menu selection File>Close.

v Click the File Close button in the main toolbar.

Copying elements between open Configs (or folders)

Do the following:

1. Select the element you want to copy.

2. Menu selection Object>Copy (or the keystroke combination Ctrl+C)

Chapter 3. The Config Editor 145

3. Select where you want the element copied.

4. Menu selection Object>Paste (or the keystroke combination Ctrl+V).

Notes:

1. If you copy an AssemblyLine that inherits library components (Connectors, Parsers, and so

forth), then these components lose their link to the library components, becoming fully

instantiated instances instead.

2. You can move an item by using Object>Cut (Ctrl+X) to cut the selected item instead of

copying it.

Config folder management

IBM Tivoli Directory Integrator comes with a recommended set of folders that match the

Configuration menu selections of versions prior to 5.2 (for example, AssemblyLines,

Connectors, Parsers, and so forth). You cannot rename these standard folders, nor can you

delete them.

Config Folder

The first standard folder in a Config, shown in the TDI CE Config Browser is a folder called

″Config″. This folder has three items under it: Logging, AutoStart and Tombstones.

Logging

This is where you define the Config-level log appenders to be used in addition to any

specified for an AssemblyLine (or EventHandler).

AutoStart

You drag in the ALs (or EventHandlers) that you want automatically launched

whenever the Server starts this Config (unless suppressed by starting the Server with

the -D command line option)11. There is also button row above the AutoStart list for

adding and removing items.

Tombstones

In this section, you define Tombstone options at the Config level. Tombstones and the

Tombstone Manager are described in detail in the IBM Tivoli Directory Integrator 6.1:

Administrator Guide.

Creating new elements (AssemblyLines, Connectors, Parsers, and so forth)

Select the folder under which you want to create the new element and then do one of the

following:

v Right-click an element, and select New element.

v Go to Object–>New element.

v Select the folder where you want to create the item and click the Insert new object button

in the Config Browser toolbar.

Where element is the type of element you want to add, for example, an AssemblyLine,

Connector, Parser, EventHandler, and so forth.

11. This function is in addition to the Auto Start Service checkbox found in the EventHandler Config tab.

146 IBM Tivoli Directory Integrator 6.1: Users Guide

When creating a new AssemblyLine or a Script, all that is required as input in the ensuing

dialog box, is a valid name. When creating other elements, you must provide a valid name as

well as choose a template from the list provided.

Deleting existing folders or Config elements (AssemblyLines, Connectors, Parsers, and

so forth)

Select the folder (or other element) that you want to delete and then do one of the following:

v Right-click on an item and select Delete Item.

v Click the Delete selected object(s) button in the Config Browser toolbar.

Note: There is no undo for this operation. If you delete a folder that contains other Config

elements, then these are deleted as well.

Navigating the left navigation panel

You can either:

v Click the Open/Collapse icon next to a folder.

v Use the left and right arrow keys.

Show the details of an element in the Config Browser

Click an element in the Config Browser.

This action results in the details of the selected element being displayed in the Details Pane.

Renaming a folder or Config element

v Select an element and click the Rename selected object button in the Config Browser

toolbar, or press F2.

v Right-click on an item and select Rename.

Packaging, Library and Reports

You can create self-contained solutions, called packages, that can be easily reused by other

TDI users. A package hides all the component configurations and code that is necessary for a

solution to function and exposes only the useful AssemblyLines configurations for users of the

package. These AssemblyLines are used via the AssemblyLine FC, which also provides the

end-user user interface for the AssemblyLine.

The Library is a place where developers keep common code and configurations to be used in

TDI solutions. It is a repository of independent objects that can be reused in solutions.

Inheritance and use of properties are discouraged and also very limited in support. Together

with the packaging feature, the Library delivers a new development and deployment

environment that greatly simplifies sharing of solutions and code.

Packaging

Packaging is the process of creating a self contained configuration file based on one or more

AssemblyLines. During this process, all objects in the configuration referenced by the

AssemblyLines are resolved in order to create a configuration file that has no external

Chapter 3. The Config Editor 147

dependencies. You select which AssemblyLines to package and TDI resolves all objects

referenced by those AssemblyLines. The exception to this is when objects reference objects in

the system or package namespace. When creating a package, the user is prompted to fill out a

form that specifies the restrictions under which the package operates.

To create a package, do the following:

1. Select the AssemblyLine or AssemblyLines you want to package.

2. Click File>Publish.

3. Enter the following parameters:

Package ID

A unique identifier that distinguishes this package from others.

Description

A description of the package and what it does.

Author

The author of the package

Version

The user-defined version of this package

Date The issue date of the package.

Help URL

The URL for a help/contact web page

Operations

Displays the Operations published by this AssemblyLine.

Resource Usage

A generated list of resources used by the package, including the name and version

of components and other packages.
4. Click Save.

Library

The Library is a directory in the user’s home directory where individual configuration objects

are stored as separate files. Each file contains one single configuration object. The library is

always available in the Config Editor on the Resources tab below the Config Browser.

You can drag and drop configuration objects between the library and a configuration file.

Dragging in and out of the library is always a copy operation. When a configuration object is

dragged from a configuration file to the library, the source object’s dependencies are resolved

before being copied to the library so that the copied object has no inheritance other than those

from the system namespace and other packages.

148 IBM Tivoli Directory Integrator 6.1: Users Guide

AssemblyLines and EventHandlers cannot be executed from the library; they must be copied

into a configuration file first. When an item is copied from the library to a configuration file,

the object is copied verbatim to the configuration file (e.g. no flattening or preprocessing on

the item is done).

Objects in the Library can only inherit from the system namespace. Note that the system

namespace always targets the TDI version used by the CE. Hence, running different versions

of the CE may cause unwanted results.

Although a configuration file in the Library can have property references, the configuration

itself does not have a TDI Properties object available. Property references added to library

items must be resolved by the target configuration to which it is copied.

Config and AssemblyLine Reports

AssemblyLine and Config reports provide a formatted view of the selected Config or

AssemblyLine. You can customize Reports with the use of stylesheet transfroms.

To create a report:

1. In the tree view of the current configuration, right-click the Config or AssemblyLine for

which you want to create a report .

2. Select Config Report.

3. Select a report template or browse for a specific report. Report templates are located in the

<TDI_INSTALLDIR>/ASL/ConfigReports directory and have the extension .xsl. The

following report templates are provided:

v ALOverview.xsl

v Inheritance.xsl

v ALTable.xsl
4. Click Open.

AssemblyLines

Managing AssemblyLines

AssemblyLines are created, deleted and renamed through the Config Browser (see “Config

folder management” on page 146).

AssemblyLine configuration

Once an AssemblyLine has been opened in the Details Pane, then this is where you configure

and access its various features.

Below the title area are a set of Tab controls that provide you access to the following

AssemblyLine features:

v Hooks

v Data Flow

Chapter 3. The Config Editor 149

v Config ...

v Operations

v Checkpoint

v Sandbox

v Logging

v Description

Hooks

This tab provides access to the various AssemblyLine Hooks (see “Hooks” on page 185).

These include:

Prologs (Before Connectors Initialized and After Connectors Initialized)

The Prolog marked Prolog – Before Init. is started before Connectors are initialized,

and is especially useful for configuring Connectors based on parameters passed into

the AssemblyLine. There is also an ordinary Prolog, run after Connectors are

initialized, where you can check the status of opened connections, or fine-tune

parameters.

On Start of Cycle

This Prolog is run each time the AssemblyLine starts at the beginning. This could be

because an EventHandler has fired up this AssemblyLine, or because of a Connector

in Iterator mode cycles to its next data object.

Epilog This Hook is executed when the AssemblyLine has come to an end (without errors).

Epilog – After Close

Script that is entered here is executed after the AssemblyLine stops (either successfully

or in error). All Connectors will have closed down at this stage.

On Success

This Hook is executed when the AssemblyLine has terminated successfully.

On Error

This Hook is executed when the AssemblyLine has terminated unsuccessfully, and the

error condition has not been dealt with earlier.

Shutdown Request

This tab lets you enter script to be started when the AssemblyLine is instructed to

150 IBM Tivoli Directory Integrator 6.1: Users Guide

stop (for example, from the AMC Console, or from another server). This script enables

you to add clean-up code for terminating the AssemblyLine in a controlled fashion.

For more information about the different hooks available, see “List of Hooks” on page 67.

All of these Hooks present you with a Script Editor Window (described in “Script editor

windows” on page 142).

Data Flow

Here is where you find the Connector List Control, along with their details.

Data Flow tab: The Data Flow tab is where Connectors and other AssemblyLine components

are managed. At the top left part of this window is the Connectors List. The Connectors List

consists of three sections:

Feeds The ″Feeds″ section houses those connectors that create work entries. Connectors in

Chapter 3. The Config Editor 151

Iterator or Server mode end up in this section. At any given time, only one Connector

in this section will create an Entry and pass it to the Flow section; it will not be

touched by any other Connector in the Feeds section.

Flow Once a work entry has sprung from the Feed, the ″Flow″ section is where you would

place Connectors to operate on the Entry. The Connector at the top is fired first; once

it has completed its processing the second Connector is fired, and so on. Which

Connectors are executed can be controlled by means of Flow Components: Branches

and Loops.

You can change the order of the various Connectors in the respective sections by dragging

and dropping them as you like. Multiple Connectors in Server mode can be active in the

″Feed″ section, and any one of them can at any given time serve up an Entry and pass it

down the AssemblyLine for one cycle. In the case of Iterator Connectors in the ″Feed″ section,

only one of them will be active: when the AssemblyLine starts for the first time, the topmost

Iterator Connector will execute and pass an Entry into the ″Flow″ section, until such time its

source is exhausted; thereafter, control will pass to the next Iterator Connector.

When the last Iterator Connector has exhausted its datasource, then once the AssemblyLine

has finished processing the Entry in the Flow section it will terminate (unless there are active

Connectors in Server mode).

Note: The order of Connectors in this list is significant, as they are started from the

top-down. The exception to this are Connectors in Iterator or Server mode. When IBM

Tivoli Directory Integrator detects Iterators or Server mode Connectors in an

AssemblyLine, it starts them first, regardless of their position. In addition, it first uses

the topmost Iterator to read from its data source, continuing to get new entries from

the Iterator until it reaches end-of-data. On the next iteration, the second Iterator in the

list is started, and so on. The order of Connectors in Server Mode is not relevant (i.e.,

they run asynchronously and listen for events), aside from the fact that this is the order

in which they are initialized when the AssemblyLine starts.

Connectors in Server mode typically open up a communications port, and then assign

an instance of itself in a pseudo-Iterator mode to the port, waiting for things to happen.

The buttons below the Connectors list are:

Add Component

Here you can choose to add an AssemblyLine Connector. The AssemblyLine in these

terms indicates that these components are tied to a specific AssemblyLine. You can

also add a new AssemblyLine Connector by dragging one from the Config Browser.

Notes:

1. Trying to drag any component other than the Connector component in the Data

Flow tab of the AssemblyLine gives you the following error message:

You may only drop a Connector in an AssemblyLine

152 IBM Tivoli Directory Integrator 6.1: Users Guide

2. The Mode of the Connector determines in which section the Connector will be

placed. Iterators and Server Mode Connectors will end up in the ″Feeds″ section,

all others will be placed in the ″Flow″ section.

Delete selected object(s)

Removes the AssemblyLine component.

Rename selected object

Renames the AssemblyLine component.

Copy this object to the standard library

The selected component in the flow window is copied to the appropriate place in the

configuration tree. This means that an AssemblyLine Connector is copied to the list of

library Connectors under the Connectors folder, a Parser is copied to the Parsers folder

etc.

When creating a new AssemblyLine component, you have the choice of either adding an

AssemblyLine Connector or a Script Block.

 Just below the Connector list is a window that shows you the contents of the Work Entry, as

well as the name of the Connector that is mapping each Attribute into the flow.

Config ...

This tab contains a number of parameters that you can use to set the operation properties of

this AssemblyLine, as well as control the behavior of Iterators and attributes that are missing

during Attribute Mapping.

Chapter 3. The Config Editor 153

These parameters are:

Load task parameters from

Enter the name or path of a file where you want to read parameters that were saved

by this AssemblyLine (or a different one). This is one way of passing operational data

between AssemblyLines, or different iterations of the same AssemblyLine.

Note: This parameter is deprecated, and this functionality will be removed in future

versions of TDI. Use the facilities provided by the Properties framework

instead.

Save task parameters to

Same as the Load task parameters from parameter, except this parameter specifies

which file User specified parameters are written to after completing the

AssemblyLine.

154 IBM Tivoli Directory Integrator 6.1: Users Guide

Note: This parameter is deprecated, and this functionality will be removed in future

versions of TDI. Use the facilities provided by the Properties framework

instead.

Log statistics interval

Here you can set a count value for how often you want the IBM Tivoli Directory

Integrator server to display a progress count. This is useful for providing visual

metrics during the processing of large quantities of data.

Max number of reads (Iterator)

This parameter limits the number of entries that any Iterators in this AssemblyLine

passes down the data flow.

Note: If you are filtering data during Iterator input (for example, in the After GetNext

Hook) such that some input objects are being skipped, the Iterator continues to

read data until it has passed the specified number of entries to the next

Connector, or reached the end of the input data set.

Max number of errors

Specify the error tolerance level of this AssemblyLine. If the number of errors exceeds

the value entered in this parameter, then AssemblyLine terminates.

Max duplicate entries returned

Whenever a Connector in this AssemblyLine looks up information in a data source

(for example, Delete, Update and Lookup mode), then this parameter limits the

number of entries that are returned. If no value is specified, a default value of 10 is

implied; specify 0 to return an unlimited number of entries (in fact, as many as

memory will allow).

Note: This value is the total number of entries returned, so limiting this parameter to

1 (one) can cause unexpected results for Delete and Update operations. This is

due to the fact that if the Connector is unable to isolate a single entry, then the

results of the Delete or Update might result in multiple entries being deleted or

updated, or none at all (depending on the functionality of the data source). If

you limit the Max duplicate parameter to a value of 1 then you cannot detect

these situations in your solution.

Include All Global Prologs

If this checkbox is enabled, then all Script Libraries that have the Auto include

checkbox checked are evaluated at the startup of this AssemblyLine.

Include Additional Prologs

Here you can select which Script Libraries are to be included as additional Prologs for

this AssemblyLine.

Note: You can include a Script Library with this parameter even if the Script Library

is not marked for Auto include.

Chapter 3. The Config Editor 155

Automatically map all attributes

A convenience parameter that enables you to quickly set up mapping to and from

data sources that have compatible schema. If this parameter is enabled, then it works

the same as if you had set up an any map (a single Attribute named *) for each

AssemblyLine Connector.

Define ALPool Options

Clicking this button opens the Define ALPool Options dialog. ALPool stands for

AssemblyLine Pool. The ensuing dialog box will present you with two input fields

and a check box:

Number of prepared instances

Defines the minimum number of identical threads to be started by TDI,

pre-loaded with the execution logic of this particular AssemblyLine. These

threads are held in a pool, ready to be assigned to an actually executing

AssemblyLine when a work entry is ready for processing.

Maximum concurrent instances

Defines the maximum number of threads that can exist for this particular

AssemblyLine, even if there are more work entries created by the Entry Feed

components, ready for processing.

Ignore delayed initialization settings

Ignores the ″Initialization″ settings for all components, and instead initializes

them at AL start up. This setting can prevent a connection timing out due to

excessive initialization time required by ″delayed″ components.

If at some stage the number of idle threads (i.e., threads not currently assigned to

process work) is higher than Number of prepared instances, the excess will be

trimmed.

Null Value Behavior

This form lets you decide how Attributes that are listed in an Attribute Map, but

which are not found during mapping, are to be handled. Both what constitutes a Null

Value, and how to handle a Null Value in Attribute Mapping can be defined.

156 IBM Tivoli Directory Integrator 6.1: Users Guide

You can define the Null Behavior:

v Default Behavior tells IBM Tivoli Directory Integrator to use the behavior setting

defined by the global attributes rsadmin.attribute.nullBehavior,

rsadmin.attribute.nullBehaviorValue, rsadmin.attribute.nullDefinition and

rsadmin.attribute.nullDefinitionValue, as follows:

– If rsadmin.attribute.nullBehavior is not defined anywhere, the behavior is

″Delete″.

– If rsadmin.attribute.nullBehavior is defined as ″value″, then the value defined

for rsadmin.attribute.nullBehaviorValue is taken - this attribute must have a

value in this case.

– If rsadmin.attribute.nullDefinition is not defined anywhere, only absent

attributes count as null values.

– If rsadmin.attribute.nullDefinition is defined as ″value″, then the value

defined for rsadmin.attribute.nullDefinitionValue is taken - this attribute

must have a value in this case.
v Delete Attribute means that the Attribute is removed during mapping.

v Return Null Value means the Attribute is returned with no value (null value).

v Return Empty String means that the Attribute is returned with an empty string

value.

v Throw an Exception means when an Attribute is missing in the Data source, throw

an Exception.

v Specify Value ... lets you set a value to be returned each time this Attribute is

missing.

Chapter 3. The Config Editor 157

In addition, you can define what exactly constitutes a NULL value under Null

Definition (note that the list is cumulative):

v Default means IBM Tivoli Directory Integrator uses the setting in

Edit–>Preferences.

v Only absent attribute is null means (missing) attributes are defined as null, no

other comparisons are made.

v Empty attribute means empty attributes (no values) are considered null (as well as

absent ones).

v Attribute with single empty string means an attribute containing nothing but an

empty string are considered null (in addition to absent and empty Attributes).

v Specify value means an Attribute containing a user-specified value (in the box

below) are considered to be null, in addition to all of the above.

Detailed log

Causes IBM Tivoli Directory Integrator to log detailed operational messages that are

helpful when troubleshooting or debugging an AssemblyLine.

Create Tombstones

Causes Tombstones to be created for the AssemblyLine. Tombstones and the

Tombstone Manager are described in detail in the IBM Tivoli Directory Integrator 6.1:

Administrator Guide.

Operations

AssemblyLine Operations allow you to implement any number of distinct functions to be

performed by an AL. Each operation has an associated set of Input and Output Maps for

defining both parameter values passed in when an Operation is called, as well as Attributes

returned after the called AL Operation is finished.

158 IBM Tivoli Directory Integrator 6.1: Users Guide

The Operations tab is where you add and remove operations for an AssemblyLine. Select an

Operation in the list in order to edit the Input and Output Maps associated with it.

Note:

If no operations are defined, then TDI considers the AL to have a single “default”

operation, allowing existing Configs to run without modification.

Add an new Attribute to the Attribute map

Adds an Attribute to an Entry list.

Remove selected Attribute from Attribute Map

Removes an Attribute from an Entry list.

Switch views

This button toggles between the Schema view, Detail View and the List view.

Chapter 3. The Config Editor 159

Perform quick discovery

Pre-fills the Schema according to the Work Entry as designed in the AssemblyLine.

Null Defines how to handle Null values passed in the Initial Work Entry.

 There can actually be more Attributes in the Work Entry in both cases, but this is the

minimum requirements list.

In addition, you can edit the following information directly in the Entry Attribute list:

External Name

Here you can specify what this Attribute is called outside the AssemblyLine, enabling

you to map it to an external parameter name.

Internal Name

This is the name of this Attribute inside the AssemblyLine.

Null behavior

Here you can set the value behavior of the Attribute if it is missing, or does not have

a value. Setting this field overrides Null Behavior. Options are:

v Delete

v Null

v Empty String

v Value

v Default Behavior

v Error

Null value

If this checkbox is enabled, then this parameter is mandatory, and its absence results

in an error.

Syntax

You can specify the type of this Attribute here.

Checkpoint

For more information about the Checkpoint functionality, see “Checkpoint/Restart” on page

95.

160 IBM Tivoli Directory Integrator 6.1: Users Guide

This tab has the following parameters:

Enable Checkpoint

The master switch for the whole AssemblyLine. This must be checked for any

Checkpoint/Restart functionality and any recording of information to take place. Also,

in order to be able to distinguish between different runs of the AssemblyLine, you

must specify an Identifier.

Identifier

Identifies the AssemblyLine for subsequent Restart. If nothing is specified, a default in

the form of IDI_CP_AssemblyLine_name is used.

The following values are available for the Checkpoint result:

Name Name of the Connector in the AssemblyLine.

Enabled

This must be checked for the Checkpoint/Restart framework to consider recording

Chapter 3. The Config Editor 161

any information about this particular Connector at all. It also causes a Connector in

Iterator mode to save the Work Entry just before the AssemblyLine is finished

processing and moves on to the next Connector.

Work Entry

Checking the Work Entry checkbox instructs the Checkpoint/Restart framework to

record the contents and state of the Work Entry before this particular Connector does

its work in the AssemblyLine.

Connector Restart Info

By enabling the Connector Restart Info checkbox, you ensure that the

Checkpoint/Restart records any information required for this Connector to be able to

make a meaningful resumption of its processing during an AssemblyLine restart. An

example of this is the position in an input file.

Sandbox

For more information about Sandbox functionality, see “Sandbox” on page 18.

 This tab has the following parameters:

162 IBM Tivoli Directory Integrator 6.1: Users Guide

Database

URL of a database to hold Sandbox information.

For each of the Connectors in the AssemblyLine, you can set options:

Name

Name of the Connector in the AssemblyLine.

Record Enabled

If checked, record the actions of this Connector in the database.

Playback Enabled

If checked, instead of actually performing any work, retrieve the results of what this

Connector did during an earlier run, and feed this into the AssemblyLine.

Logging

For more complete information about Logging, see ″Logging and debugging″ in IBM Tivoli

Directory Integrator 6.1: Problem Determination Guide.

Only the parameters that describe how messages are logged are described here.

Chapter 3. The Config Editor 163

All log configuration windows operate in the same way. For each one you can set up one or

more log schemes. These are active at the same time, in addition to whatever defaults are set

in the log4j.properties and executetask.properties files.

 For a list of the possible logging schemes, see “Logging” on page 207.

Log Levels: Log levels can be

v DEBUG

v INFO

v WARN

v ERROR

v FATAL

DEBUG, INFO, WARN, ERROR and FATAL have increasing levels of message filtration.

Note that the IBM Tivoli Directory Integrator logmsg() (called from script, e.g.

task.logmsg("Hello");) calls log at INFO level if nothing else is specified. This means that

setting loglevel to WARN or lower silences your logmsg calls as well as all Detailed Log

settings.

164 IBM Tivoli Directory Integrator 6.1: Users Guide

Description

This is a free-form text field, where you can document (aspects of) your AssemblyLine.

Whatever is in this field, is not considered by IBM Tivoli Directory Integrator anywhere.

Additionally, individual Components have their own Description field.

Testing AssemblyLines

At the top of the AssemblyLine Details window is a toolbar.

 Here you find buttons to access the following operations:

Run You can also run an AssemblyLine directly from the Config Editor by first selecting

the AssemblyLine, and then clicking the Run button in the Main toolbar.

Run Debugger

Runs the AssemblyLine in a debug session.

Help for this panel

This help button opens a help page in the online documentation for the specific tab

currently open in the Details window.

Close this window

Closes the AssemblyLine Details window.

Debugging

The IBM Tivoli Directory Integrator Debugger

To TDI Debugger allows you to step through an Assembly Line, analyzing the AssemblyLine

for errors at each step. AssemblyLine steps are defined by a Watch List and breakpoints.

Watch List: The Watch List displays any variables or expressions that you want to watch as

your scripts execute. Whenever one of these expressions changes, it’s value is updated in the

Watch List. Watch list items are evaluated at each breakpoint.

To add an expression to the Watch List:

1. Click the Insert button on the Watch List tab.

2. Do one of the following:

v Select a variable from the Add watch variable(s) list.

v Enter an variable expression in the Expression field.
3. Click OK.

Chapter 3. The Config Editor 165

Breakpoints: Breakpoints are the core elements of the Debugger. They enable you to select

where the TDI server will interrupt its execution of the AL for developer intervention. There

is a default breakpoint at the beginning of an AL, meaning that the Debugger always breaks

before executing any of the AL code.

There are two types of Breakpoints:

Static Static breakpoints are set by checking the corresponding check box in the

AssemblyLine Flow window as descried above. These Breakpoints are “sticky” until

the end of the Step session. Backward compatibility is ensured by including

Breakpoints set in the configuration of the connector/component.

Conditional

Expressions can be added to a Breakpoint, and will only trigger a break if the

expression evaluates to true.

Defined breakpoints are saved across subsequent runs of the Debugger.

To define a breakpoint do one of the following:

v Select the check box next to a possible breakpoint the Debug Breaks tree view.

v On the Breakpoints tab, select the Show all possible breakpoints check box and select the

desired breakpoints from the list.

Selecting a breakpoint in the Debug Breaks tree view selects that breakpoint on the

Breakpoints tab, and vice versa.

Debugging an AssemblyLine

To debug an AssemblyLine, click the AssemblyLine's Run Debugger button, or pressing the

Alt-D keyboard shortcut. Running the Debugger starts the TDI Server. The server loads the

Config, prepares to run the AL and then returns control to the Debugger. At this stage you

can select breakpoints and Watch List expressions, or you can begin stepping through your

Assembly Line. Stepping options are made available through buttons, menus or right-click

options:

Step Into

Continues execution and stops at the next breakable point.

Step Over

Continues execution until the next static breakpoint or at the next component in the

AssemblyLine.

Continue

Executes until the next static or conditionally true Breakpoint.

Continue Until here

This right-click option causes execution to continue until the next static Breakpoint or

the selected Hook is reached.

166 IBM Tivoli Directory Integrator 6.1: Users Guide

Once the selected task is started, the Debugger pauses processing at specified breakpoints.

Whenever execution is paused, you can use the Evaluate button to display information or run

script. One example of a variable you might want to watch is work (the work Entry object).

By entering work in the Evaluate dialog, or adding it to your watch-list, you can see work

serialized to the Output pane of the debugger. If instead you evaluate (or watch) the script

task.dumpEntry(work), then the work Entry is dumped to the log output pane instead, just as

if you had this code in your solution.

Breakpoints can be set in Hooks by enabling the Debug Break check box or by selecting the

checkbox next to the desired Hook in the Debugger Breaks list. If a breakpoint is enabled in

the Config Editor, the Debug Breaks list shows you where you are when execution pauses.

You can also set breakpoints in your scripts by using the following method:

task.debugBreak ("my message");

This code stops processing here and outputs the text "my message" to the log.

Note: The Debug Break pane cannot determine where this breakpoint is, so you must rely on

the messages you write to the log.

There is another commonly used debug method:

task.debugMsg ("my message");

This function simply outputs a message without pausing task execution.

These methods are only evaluated when the debug-process is run. See the Javadocs for more

debug-methods.

AL execution can be interrupted at any time by clicking the Stop current debug session

button.

Logging and debugging

IBM Tivoli Directory Integrator relies on log4j as its logging engine. Log4j is a very flexible

framework that lets you send your log output to a variety of different destinations, such as

files, the Windows EventLog, UNIX Syslog or a combination of these. It is highly configurable

and supports many different types of log appenders.

The log scheme for the IBM Tivoli Directory Integrator Server (ibmdisrv) is described by the

file log4j.properties, while the console window you get when running from the Config Editor

(ibmditk) is governed by the parameters set in the executetask.properties file (both found in

the root directory of your IBM Tivoli Directory Integrator installation.

In addition to these system-level log parameters, you can specify the log configuration for a

specific Config by adding, changing and deleting Logging Appenders under the

Config>Logging folder in the Config Browser. Finally, AssemblyLines and EventHandlers

provide a Logging tab that lets you tailor logging for this specific task.

Chapter 3. The Config Editor 167

In order to augment the IBM Tivoli Directory Integrator built-in logging, you can create your

own log messages by adding script code in your AssemblyLine. This page describes this part

of the logging process.

Logging functions (like those for debugging) are mainly provided by the task object.

Dumping the content of an Entry object: One handy function enables you to examine the

contents of any Entry object (such as work, conn and event):

task.dumpEntry(entry)

This call dumps the specified Entry object to the log, showing you all Attributes, Properties

and operation codes stored there.

Dumping the content of an Attribute:

Dumping single value Attribute: Suppose an attribute (with the name attr) is the single-value

attribute that you want to examine. This can be done using the task.logmsg() function:

task.logmsg("Dumping single value attribute:" + attr.getName());

task.logmsg("Value = " + attr.getValue());

Note: The .getValue() function returns only the first value of an attribute.

Dumping multiple values Attribute: Suppose an attribute (with the name attr) is a

multiple-valued attribute and you want to display them all. In this case, you must iterate

through these values:

var values = attr.getValues(); // get all attribute values in new array variable

// write out the attribute name

task.logmsg ("Dumping multiple values Attribute:" + attr.getName());

for (i=0; i<values.length; i++)

{

 // write out each value

 task.logmsg("Value " + i + " —> " + values[i]);

}

If you don’t know whether the attribute is single- or multi-valued you can always use the

method show previous. In fact, if you do this often, you want to create a function in your

Script Library that you can reuse as needed:

function dumpAttribute(tsk, att)

{

 tsk.logmsg("------- Attribute: " + att.getName());

 for (var i=0; i<att.size(); i++)

 tsk.logmsg(" Value: " + att.getValue(i));

}

Now you can display any attribute by simply calling your function:

dumpAttribute(task, myAtt)

168 IBM Tivoli Directory Integrator 6.1: Users Guide

Dumping the state of a Connector: You can, at any time, dump the state of any of the

Connectors involved in your integration process. This is the same information that is

displayed in the log output of an AssemblyLine powering this Connector. The following

example script displays all the information available for the Connector called myConn. Of

course, you can use an arbitrary subset of the Connector’s parameters listed below according

to your needs.

var status = myConn.getStats();

task.logmsg("Dumping myConn status:");

task.logmsg("Number of add operations performed: " + status.numAdd());

task.logmsg("Number of delete operations performed: " +

 status.numDelete());

task.logmsg("Number of errors: " + status.numErrors());

task.logmsg("Number of get operations performed: " + status.numGet());

task.logmsg("Number of entries ignored: " + status.numIgnored());

task.logmsg("Number of lookup operations performed: " +

 status.numLookup());

task.logmsg("Number of modify operations performed: " +

 status.numModify());

task.logmsg("Number of no-change entries: " + status.numNoChange());

task.logmsg("Number of entries skipped: " + status.numSkipped());

Dumping arbitrary log messages: The .logmsg() method lets you include any text you want

to the log output. This means you can indicate in the log or console any state of the custom

logic of your AssemblyLines.

task.logmsg("Enter your own log message here");

The .logmsg() method optionally takes a log level parameter which you can use to override

the default INFO level. The legal values for log level are: ″FATAL″, ″ERROR″, ″WARN″,

″INFO″, ″DEBUG″, corresponding to the log levels available for log Appenders. Any

unrecognized value is treated as ″DEBUG″.

Debugging a Script Connector (or other object) where task not available: The task variable

gives you access to the currently executing task (thread owner). However, there are situations

where the task variable is not available to your script, for example, inside a scripted

Component (such as a Script Connector or Parser). This is an important object for many script

operations, so you want to set up your own task variable with the following code:

task = java.lang.Thread.currentThread()

Similarly, the main can always be accessed through:

main = connector.getRSInterface()

Working with AssemblyLine files before processing is completed

Files are closed only when the AssemblyLine ends. However, you can force a Connector to

close and reinitialize. The following snippet of code creates a new file each time it is started.

The filenames are file1.xml, file2.xml and so forth (assuming the variable iteration was

initialized to 0).

Chapter 3. The Config Editor 169

iteration++;

// close the file associated with the Connector named xml

xml.connector.terminate();

// Associate a new filename to the Connector parameter filePath

xml.connector.setParam("filePath","c:/tmp/file" + iteration + ".xml");

// reinitialize the Connector

xml.connector.initialize(null);

This code can be put wherever you want, even within the Connector itself.

If you have opened the AddOnly Connector in append mode, the setParam() is not necessary,

but for output mode the sequence terminate() and initialize() can cause you to lose previous

work.

AssemblyLine Reports

To create a formatted view of an AssemblyLine, see “Config and AssemblyLine Reports” on

page 149

Connectors

Connector management

Connectors can be created two ways:

v Directly in the Config (also known as Library Connectors. See “Config folder management”

on page 146).

v In an AssemblyLine (also called AssemblyLine Connectors. For more info on how to add

Connectors to an AssemblyLine, see “Data Flow tab” on page 151).

Or, if you want to add a pre-configured Connector in your Config to an AssemblyLine, simply

drag the Connector from the Config Browser to the AssemblyLine’s Connector List (in the

DataFlow tab). Note that the order in which the Connectors are listed is significant.

Using Connectors in AssemblyLines (AssemblyLine Connectors)

When you create a new Connector, you must do the following to complete its setup:

Set Mode

If you create an AssemblyLine Connector (click Add new Connector in the Data Flow

tab), then mode is set in the Add Connector dialog. However, if you create a

Connector directly in the Config Browser, you can set the mode of the Connector in

the drop-down at the top of the Connector Details window.

State You can choose between Enabled, Passive and Disabled. The default is Enabled.

Set Type

When you create an AssemblyLine Connector, you can select the type directly in the

Add Connector dialog. If you create the Connector directly in the Config Browser (or

if you want to change the type of Connector), use the Inheritance dialog which is

displayed when you click the Inherit from: ... button at the top of the Connector

Details window.

170 IBM Tivoli Directory Integrator 6.1: Users Guide

Note: If you want to connect a Parser to a Connector, then this is also done through

the Inheritance configuration dialog.

Config...

On this tab you set the parameters that are specific to the type of Connector selected.

Prolog You can insert scripts here, both in the Before Connectors Initialized tab (where you

can reconfigure AssemblyLine components before initialization and connection is

carried out) and in the After Connectors Initialized tab.

Epilog Writing a script to be started once the AssemblyLine is completed. One typical use is

to manipulate the final Work Entry before control is passed to the calling

EventHandler or external system (for example, set up output parameters for this

AssemblyLine).

Input/Output Map (Attribute Map)

On this tab you set up the Attribute Map for this Connector.

Note: Only one of these tabs is active at any time, depending on the Mode of the

Connector (with the exception of CallReply Mode which uses both).

Delta This tab is for setting up the Delta feature that is available for Connectors in Iterator

mode.

Description

This tab consists of a free-form text field where you can enter documentation

regarding this particular Component.

Setting up a Connector

The Connector Details pane provides two drop-down boxes for setting or changing the Mode

or State of a Connector.

 Most IBM Tivoli Directory Integrator components are bi-directional, and in the case of

Connectors this means that they can perform both read and write operations on the connected

data source. However, each Connector in an AssemblyLine must be assigned a specific role

for that particular data flow. This is done by setting the Mode of the Connector. For more

information about Connector modes, see “Connector modes” on page 21.

Chapter 3. The Config Editor 171

Connector modes are (only the ones valid for this particular Connector will be shown):

AddOnly

This output mode tells IBM Tivoli Directory Integrator that this Connector is adding

new information only to the source, for example, writing to a text file. AddOnly mode

provides access to the Output Attribute Map.

Delete A Connector in Delete mode uses its Link Criteria to find a specific entry in the data

source and then delete it. Delete mode provides access to the Input Attribute Map,

enabling you to examine the data to be deleted, making the decision at the Attribute

level.

Iterator

Iterator mode means that the Connector gets a view into the connected source and

then returns one entry at a time for processing in the AssemblyLine. For example, a

JDBC Connector which is linked to an SQL database first fires off a SELECT

statement, and then returns all the records in the result set, one at a time. Iterator

mode provides access to the Input AttributeMap.

Note: One of the key characteristics of IBM Tivoli Directory Integrator is that it

processes information one entry at a time.

Lookup

Lookup mode is used to find data in the connected data source that matches some

attributes in the data that is in the flow already. The Connector then aggregates (also

called a join) this information into the flow. Lookup mode provides access to the

Input Attribute Map.

Update

In Lookup mode, the Connector first performs a find operation (just as in Delete and

172 IBM Tivoli Directory Integrator 6.1: Users Guide

Lookup modes). If matching data is found, then the Connector performs a modify

operation on this entry. If a match is not found, then the entry is added to the data

source. Update mode provides access to the Output Attribute Map.

CallReply

CallReply mode is used to make requests to data source services (such as Web

services) which require you to send input parameters and then return the information

you request. Unlike the other modes, CallReply provides access to both Input and

Output AttributeMaps.

Server This mode is used to subscribe to certain events from client systems. Once a

notification from a client system is received, the Server mode connector generates a

clone of itself as an Iterator, and feeds received Entries into the AssemblyLine. When

there are no more entries from the client, the clone thread dies (or is returned to the

AssemblyLine Pool) and the Server mode Connector becomes dormant again.

Delta This mode is a combination of Update mode and Delete mode. It is dependent on

delta information generated by either the Iterator Delta Store feature (Delta tab for

Iterators), or Change Detection Connectors like the IDS/LDAP/AD/Exchange

Changelog Connectors, or the ones for RDBMS and Lotus/Domino Changes.

In addition to these modes, Connectors also have three states:

 These states have the following meanings:

Enabled

This is the standard (and default) mode for all Connectors and means that the

Connector is initialized and operating as usual.

Passive

If you set a Connector to Passive mode, then it is initialized at AssemblyLine startup,

but is not started during AssemblyLine operation. Instead, you can invoke the

Connector from your scripts.

Chapter 3. The Config Editor 173

Disabled

In Disabled mode, a Connector is neither initialized nor run during AssemblyLine

execution. This mode is often used during troubleshooting in order to simplify the

solution while debugging, helping you localize any problems.

In order to set or change the type of an inherited Connector, use the Inheritance

configuration dialog button, which results in the following dialog:

 Here is where you can set or modify the following inheritance values:

v Base inherit (i.e., parent; for example, which basic template or library object from which

parameters are to be inherited).

v The Connection to the data source itself. This is for situations where the data source only

supports a limited number of connections (for example, an IP port, or a seat license issue

for a database). In this way, several Connectors in an AssemblyLine can share the same

connection.

v Which Parser is to be associated with this Connector.

v AttributeMaps (input and output).

v Link Criteria.

174 IBM Tivoli Directory Integrator 6.1: Users Guide

v Hooks.

v Delta Settings.

v Schema (Data Source Schema), which is available for building AttributeMaps.

Even though you have set inheritance for an item in the previous list, you can modify all or

part of the inherited values. One prime exception is with AttributeMaps. You cannot remove

any Attributes from an inherited map, although you can disable them.

Note: If you set an Inheritance parameter to [parent] then this means you want to inherit this

value from whatever is set as the Base Inherit (parent) in the topmost drop-down. By

setting [parent] for all these parameters, except for the Base Inherit, then you can base

this Connector completely on another component.

Configuring a Connector

Configure a Connector in the Config ... tab, where you find a set of parameters specific to the

type of Connector you are working with.

Chapter 3. The Config Editor 175

Although the actual content and layout of this dialog differs from Connector to Connector,

each type includes the Detailed Log checkbox. If this is selected, then IBM Tivoli Directory

Integrator includes detailed operational messages in the logfile which are a valuable aid when

troubleshooting or debugging an IBM Tivoli Directory Integrator solution.

Note: Any of these parameters can be set directly from your scripts by using the setParam()

call. In order to discover the name of any parameter, simply click on the label in the

Configuration dialog (this feature is actually available in most dialogs in IBM Tivoli

Directory Integrator You are presented with a Parameter Information dialog:

176 IBM Tivoli Directory Integrator 6.1: Users Guide

The first field here is the actual internal name of the parameter (to be used in the setParam()

call).

Next is a description or help text about the meaning of the parameter.

The third field is what the value of the parameter would be if inherited from the parent

object—if it was not overridden in the dialog box.

The last field allows you to assign an External Property to this parameter. The drop-down lets

you choose from currently defined External Properties.

Note: Each parameter has a unique Parameter Information dialog.

Setting up the Attribute Map

The Attribute Map is available under the Data Flow tab, and is a specification of which

attributes are to be moved between the data flow and the Connector.

A Connector has two maps, one for Input and one for Output. However, usually only one of

these maps is available at any one time, depending on the mode of the Connector:

v Input Map for Iterator or Lookup modes.

v Output Map for AddOnly, Update or Delete modes.

v Both for CallReply mode.

Note: CallReply is the exception. It has both Input Map and Output Map available.

Chapter 3. The Config Editor 177

For more details on Connector modes, see “Connector modes” on page 21.

 The Attribute Map list is a List Control (described in “List controls” on page 136). You can

manipulate the list in a number of ways:

v Add a new attribute to the Attribute Map button in the Attribute Map toolbar.

v Remove selected attribute from the Attribute Map button in the Attribute Map toolbar.

v Dragging one or more Attributes from the Connector Schema window.

v Dragging one or more Attributes from the Work Entry window.

Note: If you want to drag an Attribute into the Attribute Map, you must drop the Attribute

onto an existing item or the title bar.

178 IBM Tivoli Directory Integrator 6.1: Users Guide

The remaining buttons in the Attribute Map toolbar are:

Switch between List, Detail and Schema view

This button switches the display between the selection list, the Attribute Map details

or the Schema view window.

 Whenever you select an Attribute in the Work Attribute list, this replaces the

Connector Schema window with the Attribute Map Settings window. Use this button

to bring the Schema window back again. You can also do this by pressing Ctrl while

clicking an Attribute (Ctrl+click Attribute).

Perform quick discovery of schema

Clicking this button results in the following actions:

1. Connector connects to the data source.

2. Connector performs a Next operation.

3. Connector closes the Connection.

Note: This might not be sufficient to discover all the necessary Attributes in the data

source. For example, for an LDAP directory, the first entry read (by the GetNext

operation) might not contain all the desired Attributes (it might not even be of

the correct class).

Null This brings up the Null Value behavior configuration dialog, and the definitions you

make here become the default for this particular Input Map for this Connector. The

choices here are similar to, but take precedence to those that are set for an

AssemblyLine.

Whenever you select an Attribute in the Attribute Map, then the Connector Schema window

is replaced by the Attribute Map Settings window.

Chapter 3. The Config Editor 179

At the top of this window are two checkboxes, and another Null Value button:

Enabled

If you deselect this box, then this Attribute is not mapped during AttributeMapping.

Type This drop-down allows you to specify how this Attribute map is to be carried out.

The options are:

v Simple - Simple type means that the mapping is done by copying values from the

selected Attributes in the list

v Advanced (JavaScript) - Advanced mapping on the other hand is done by executing

JavaScript, where values can be computed.

v Expression - Allows you to define a TDI expression for evaluation.

Null This button brings up the Null Value behavior button, similar to the one discussed

before for the AssemblyLine level and the Connector level. The button here configures

the behavior for the currently selected Attribute in the Work Attribute list, and this

overrides what is set for the Input Map, above.

Note: This is the most detailed setting of Null Value behavior, at the single Connector

Attribute level.

180 IBM Tivoli Directory Integrator 6.1: Users Guide

Below this line is the Connector Schema checklist. Here you can select any number of items

that you want returned as the value of the Attribute currently selected in the Attribute Map

list.

Note: You can switch back to the Connector Schema Window again by clicking on the Toggle

View button described previous, or by pressing Ctrl while clicking an Attribute in the

Attribute Map (Ctrl)+click Attribute).

Discovering datasource schema: The Input Map tab shows you a List Control where you

can create the datasource schema by hand, or have the Connector discover it for you:

 The buttons at the top of this list provide you access to the following functions:

Add an attribute to the schema

Adds a new attribute to the schema.

Remove selected attribute

Removes a selected attribute from the schema.

Connect to the data source

Connects to the data source.

Read the next entry

This button reads the next entry and populates the list with the attributes found in

that object.

Chapter 3. The Config Editor 181

Note: This does not erase previously listed attributes. To do this, you must select

those attributes and click the Remove selected attribute button.

Remove all schema attributes

Remove all schema attributes.

Close the connection to the data source

Closes the connection.

Discover the schema of the data source

This function might not be supported by all data sources. If that happens, then the

only option is to Connect and use the Read the next entry button.

In addition, you can edit directly into some of the columns of this grid list. Schema list fields

have the following meanings:

Name This is the name of the Attribute that is displayed in the conn object (local storage

object for the Connector’s Data Source Adaptor) when this data is read. It is also the

name the Connector uses during write operations.

Java class

This is the type of Java object that IBM Tivoli Directory Integrator represents this

Attribute as. This field is read-only.

Native syntax

This column specifies the data source-specific type of this Attribute. This field is

read-only.

Sample

Here you see a sample value for this Attribute, read from the data source after you

pressed the Read the next entry button.

Connection Errors

You can make solutions built with IBM Tivoli Directory Integrator a little more robust by

telling a Connector in Input mode, connected to a data source, to automatically attempt to

reconnect when the connection fails. You do this in the Connector’s Connection Errors

sub-tab:

182 IBM Tivoli Directory Integrator 6.1: Users Guide

The parameters are:

Auto retry to connect on initialize

If enabled, specifies that reconnect behavior also occurs for initialization errors. Check

to enable.

Auto reconnect on connection loss

The master switch for the reconnect functionality for this Connector. Check to enable.

Number of retries

The successive number of times the Connector will try to re-establish the Connection,

once it fails. The default is 1. When the number of retries is exceeded, an exception is

thrown. Note that after a successful reconnect, the counter we use to track retries is

reset to 0.

Delay between retries

The number of seconds to wait (in seconds) between successive retry attempts. The

default is 10 seconds.

Built-in reconnect rules

Displays the regular Expressions used for detecting connection exceptions (and

Chapter 3. The Config Editor 183

triggering Auto-Reconnect functionality). Contents will vary from Connector to

Connector, and can be extended by editing the etc/reconnect.rules text file.

Inherit from

Click this button to configure inheritance for the reconnect object

Connector Pooling

Connector pooling allows you to increase overall performance and scalability. The pool

represents a set of configured, instantiated and initialized Connectors associated with a Config

Instance that AssemblyLines from that Config Instance can use. When an AssemblyLine is

using a Connector from the pool, it will not initialize the Connector because it is already

initialized. You can also specify various pool parameters like minimum and maximum pool

size.

Notes:

1. Server Connectors are not usually candidates for Connector pooling.

2. The following Connector hooks will not be executed when a Connector is created and

initialized in the Connector Pool:

v Before Initialize

v After Initialize

v Before Close

v After Close

To define a pool:

1. Click the Pool tab on a Connector's configuration screen.

2. Enter the following parameters:

Enable Pooling

If this check box is selected, a pool is created for the Connector. All other

parameters on the Pool tab are taken into account only when Enable Pooling is

selected. If Enable Pooling is not selected, a pool is not created for the Connector

and AssemblyLines can only use the configuration of this Connector.

Min Pool Size

Specifies the minimum number of Connector Instances this pool will hold. A

default value of 0 is assumed when this field is empty.

Max Pool Size

Specifies the maximum number of Connector Instances that this pool can hold.

This field is required when “Enable Pooling” is checked.

Purge Interval

Specifies the time interval in seconds on which the Connector Pool will be

regularly reduced to its minimum size. If a value of 0 (zero) is specified, the Pool

will never be reduced automatically A default value of 0 is assumed when this

field is empty.

184 IBM Tivoli Directory Integrator 6.1: Users Guide

Number of Attempts to Initialize

Specifies how many attempts to initialize the Connector will be made if errors

occur during initialization. A default value of 1 is assumed when this field is

empty.

Sleep Interval between Initialize Attempts

Specifies the sleep interval in seconds between consecutive attempts to initialize

the Connector. A default value of 0 is assumed when this field is empty.

Hooks

The Hooks tab presents you with a list of waypoints in the execution of a Connector where

you can add your own scripts to be started.

 The Hooks toolbar contains the following buttons:

Delete selected Hook

Clicking this button with a Hook selected deletes the underlying script.

Chapter 3. The Config Editor 185

Toggle between editor and Hook tree-view

This swaps the display between the tree-view and the Hook editor view, giving you

more screen space in which to write and edit your scripts.

Above the Script Editor window for Hooks are two checkboxes:

Enabled

When you enter a script in a Hook, this box is automatically checked. By disabling a

Hook, you tell IBM Tivoli Directory Integrator not to start it. This also works for

inherited Hooks.

Debug Break

If you check this box, then when you run this AssemblyLine in the debugger, IBM

Tivoli Directory Integrator stops execution at this point.

Hooks are divided into three sections:

Prolog Here you find a number of Hooks, such as Before Initialize (and for Connectors in

IBM Tivoli Directory Integrator mode, Before Selection). Apart from special cases,

such as the Before Selection Hook, this section is the same for all Connectors.

DataFlow (connector_mode)

This section contains some common Hooks, such as Before Execute and Override

mode_operation (such as Override Lookup for a Connector in Lookup mode, or

Override GetNext for Iterator mode). There are also Default Success and Default On

Error Hooks. In addition, there are several mode-specific Hooks.

Epilog Here you find the Before Close (meaning, before the connection to the data source is

closed), After Close and outer On Error Hooks. This On Error Hook can be used in

your libraries as default handling logic for errors not caught in any other On Error

Hooks.

In most cases, the order of the Hooks in this tree-view represents the order in which they are

evaluated.

Hooks can be inherited from other Connectors. However, you can still override the inherited

scripts by entering some script in the Script Editor window.

If you want to remove this overriding script and revert back to inherited script behavior,

simply delete the Hook by selecting it and click the Delete selected Hook button.

Delta

This tab is only available for Connectors in Iterator mode, and is where you set up the

parameters for the Delta feature. See “Deltas” on page 78.

Enabling Delta causes the Connector to create and maintain a local repository of all data

iterated, enabling it to determine if data is changed, added or deleted (for example, gone

missing) between each run.

186 IBM Tivoli Directory Integrator 6.1: Users Guide

The Delta tab has the following parameters:

Enable Delta

Check to enable the Delta function.

Unique Attribute Name

Specify a unique attribute to use as the Delta key.

Delta Driver

Specify the Delta storage type (database). Currently you can choose between

CloudScape and BTree. The usage of BTree is deprecated, and may disappear in future

versions of ITDI.

Delta Store

The name of the table in the System Store into which the Delta objects are stored. For

BTree Delta files, the file path of the Delta database.

Read Deleted

If selected, then deleted entries are returned to the AssemblyLine. Deleted entries are

only returned when iteration of the data source has completed successfully.

Remove Deleted

If selected, then deleted entries are removed from the AssemblyLine after they are

read.

Return Unchanged

If selected, then entries that are unchanged are returned to the AssemblyLine, along

with new and modified entries.

Commit

From the drop-down menu, select the criteria for when information is recorded in the

Delta database. The options are:

After every database operation

Snapshots are committed to the System Store immediately as they are

computed during the iteration. This is the default (and backwards compatible)

option.

On end of AL cycle

Wait with the commit until the AL completes the current cycle. This is the

recommended setting.

On Connector close

The commit is delayed until the AL is finished and Connectors closed.

Although delaying commit until the end of AL processing can boost

performance, it can also result in situations where some changes have been

successfully propagated, and yet the Delta Engine snapshots do not reflect

this.

No autocommit

Commit of snapshot must be handled manually through script with the

commitDeltaState() method of the Connector in Iterator Mode:

Chapter 3. The Config Editor 187

myIterator.commitDeltaStore();

Description

This free-form text field is similar to its counterpart in the AssemblyLine, except it is meant as

a documentation field for this particular Component only.

Library Connectors

In addition to adding Connectors to AssemblyLines, you can also create Connectors directly in

the Config Browser. These are available for use in AssemblyLines, and changes made to these

library components are reflected in the AssemblyLines using them (unless you override the

inherited properties).

The same features outlined in “Using Connectors in AssemblyLines (AssemblyLine

Connectors)” on page 170 for AssemblyLine Connectors are available when working with

Library Connectors. The main difference is that the Connector Details window for a Library

Connector fills the entire Details Pane (as there is no AssemblyLine information to display).

188 IBM Tivoli Directory Integrator 6.1: Users Guide

Scripted Connectors

It is possible to implement a Connector using one of the supported script languages. This is

done by creating a Connector (either in the Config Browser or directly in an AssemblyLine)

and choosing the Script Connector type.

When you then open the Config ... tab of this Connector, you see the following screen:

Chapter 3. The Config Editor 189

There are two tabs in this window:

Script Write the script for your Connector. Some sample template code (essentially the

methods you should provide) is already provided for you.

Config...

Here you can define the script language to use, and whether to include external script

file or files from the Script Library.

Note: Even if you have selected one script language for use in an AssemblyLine, you can still

use a component (such as a Connector or Parser) that has been written in a different

language.

190 IBM Tivoli Directory Integrator 6.1: Users Guide

Parsers

Parsers are used in conjunction with Connectors and Functions to interpret or generate the

content that travels over the Connector’s byte stream. When the bytestream you are trying to

parse is not in harmony with the chosen Parser, you can get an exception like

sun.io.MalformedInputException. For example, the error message can show up when using

the Input Map tab to browse a file.

You can open a new Parser like you open any other AssemblyLine element. See “Config

folder management” on page 146 for details.

When you open a new Parser, you get the following Detail window:

 This Detail window varies with each Parser.

Chapter 3. The Config Editor 191

Script Library

Note: This is not a library for script components, but rather a library of functions you can

access from your scripts.

Scripts that you create in the Config Browser become available for inclusion in your

AssemblyLines and EventHandlers as Prologs (for example, scripts which are started at the

startup of that item). See “Scripting” on page 49 for more about the concept of scripting in

TDI.

You manage your Script Library items as you do any other item in the left navigation bar. See

“Config folder management” on page 146 for more details.

The Config Pane for a Script Library item looks like this:

192 IBM Tivoli Directory Integrator 6.1: Users Guide

Here you can select if this Script is to be Implicitly Included in all AssemblyLines and

EventHandlers. If this checkbox is set, then the script becomes a prolog for every

AssemblyLine that has its Include All Global Prologs flag enabled in the Config ... tab.

If the Implicitly Included checkbox is not enabled, then the script must be explicitly included

by an AssemblyLine using the Include Additional Prologs parameter (under the Config ...

tab).

Chapter 3. The Config Editor 193

Properties

Properties can be used to control the configuration of components. Together with the new TDI

Expressions feature, you can now compute these values using Attribute values, Java

Properties and even JavaScript code. You can also use Properties and Expressions with

Attribute Maps, Link Criteria and Conditions. Properties are fully accessible from script and

via the API.

To access properties fromthe Config Editor, click Properties in the Config Browser. This opens

the Properties tab.

The following property-types are available by default:

Solution

Solution properties arestored in the solution.properties file.

Global

Global-Properties are stored in the global.properties file.

System

System-Properties are also available by default, and are kept in the System Store,

giving you access to user-defined properties without having to set up an External

Properties file .

Java Java-Properties, which are only kept in memory (not stored anywhere), provide access

to configuration settings of the JVM itself.

At the top of the Properties window are two drop-downs, both of which can be set to

reference one of the defined Property Stores:

Default store

The Default store is the one that is searched first, as well as where new property

values created via API calls go. The designated Default Store takes precedence over

the sorting-order of the Property Store list . On reading a property, the first Property

Store that has a presence for the property is used. Conversely, when writing a

property, the first Property Store that has a presence for the property will be used to

write it back. This ensures that the location of the property remains consistent when

reading and writing properties . Of course, this behavior can be overridden by

explicitly naming the store to be used in the API call.

Password store

TDI will automatically store password parameters for Connectors, removing this

sensitive information from the Config file and into an encrypted store.

There is a row of buttons at the bottom of the Property Stores list for creating new Stores

based on Connector-technology:

Insert new object

Click to insert a new Store

194 IBM Tivoli Directory Integrator 6.1: Users Guide

Delete selected object(s)

Click to delete the select store or stores

Move object upwards

Click to move the selected store up one position in the list.

Move object downwards

Click to move the selected store down one position in the list.

All Properties have Configuration and Editor tabs. To edit a store, select the store you want

to edit from the Properties List, and then use the Configuration and Editor tabs:

Configuration

This tab defines the layout (Schema) and behavior of this Property Store.

Configuration parameters:

Key Attribute

Defines the schema of the Property Store

Value Attribute

Defines the schema of the Property Store

Initial Load

This switch is relevant only when local caching is selected and the Connector

supports Iterator mode. If selected, then the Connector iterates once through the entire

store to build a complete local in-memory cache, instead of doing searches when

individual properties are accessed.

Cache Timeout

This parameter is set to the number of seconds that a property can be cached before

another call to the connector is made to refresh the contents.

Read-Only

Controls whether this Store can be written to or not via API calls (note that your

Password Store should not be Read-Only).

Name Filters

Used to control which properties this store is to provide access to. The store could

contain additional properties, but only those that conform to the Name Filters are

visible via the Property Manager calls.

Editor

Above the property list is a toolbar with the following features:

Reload contents

Loads properties into the editor

Commit changes

Saves properties to the associated data store.

Chapter 3. The Config Editor 195

Note: Java Properties are not saved.

Insert new object

Inserts a new property

Delete selected object(s)

Deletes the selected property or properties.

Search

Searches through the list of properties base on text entered by the user.

Note: Remember that you must press the Commit changes button to have TDI persist any

changes you make on this tab.

Encrypt individual properties: To encrypt an individual property, select the Protect check

box next to the desired Property on the Editor tab.

Note: Properties are encrypted with the Server Key, meaning that encrypted properties cannot

be shared among different server instances with different server keys

Connector tab

This tab is only available for user-defined Property Stores.

The Inherit from: button at the bottom-right part of the Connector tab lets you control which

type of Connector to use for this Property Store. The default setting is the ibmdi.Properties

Connector, which reads and writes the standard External Properties format used in previous

versions.

The rest of the parameters on the tab are dependent on the Connector being used.

Java Libraries

IBM Tivoli Directory Integrator enables you to layer new functionality on top of the Server by

including your own Java libraries.

This is facilitated by opening the JavaLibraries folder in the Config Browser. The system

presents you with a list of included libraries.

196 IBM Tivoli Directory Integrator 6.1: Users Guide

JavaLibraries can be created and removed by using the toolbar in the Details Pane title area

only.

Chapter 3. The Config Editor 197

Once you have created a new Java Library entry, simply click in the grid field that you want

to edit and press F2. Or you can also double-click the field to enter edit mode. There two

fields here for you to enter:

Name This is the name of the object that is made available to your scripts, and which

provides you access to the library’s functions.

Value Here you enter the name of the Java class that is tied to this new script object.

Note: In order to be able to include new Java libraries, you must place the library’s .jar files

in either the jars sub-directory of the IBM Tivoli Directory Integrator installation

directory, or in an existing or new sub-directory under jars.

Preferences

Your user preferences (for the Config Editor) are stored in the .ibmdi file that you find in your

home directory. This file is created for you the first time you start ibmditk. It defines the

following field:

window.*

The look of your dialog boxes, for example size, position, where the split is, and so

forth.

 This dialog box is available through File–>Edit Preferences. It contains options that are valid

for the current Config Editor session.

Includes

A Config can be set up to include configuration elements from other Configs. This makes it

possible to set up central libraries of components, scripts and other Config elements that can

be stored on corporate servers, but still available to integration specialists working through

the organization.

You create and manage your Includes as you do other Config items such as Connectors and

AssemblyLines. See “Config folder management” on page 146 for details on how to do this.

Once you have added an Include, you see the following screen:

198 IBM Tivoli Directory Integrator 6.1: Users Guide

The only available option at this point is the Config Driver parameter. Select the

Configuration Storage Architecture (CSA) driver that you must use to reach this Config.

There are only two choices at present: IBM Tivoli Directory Integrator 5.1.1 legacy .cfg format,

and XML.

Note: The .cfg format is supported as read-only and for legacy reasons. It is recommended

that you use the XML format for storing Config information to file.

Once you have chosen the Config driver, you are presented with more parameters. Now you

can set the filename or URL to the Config file, as well as the decryption password (if one is in

use). You can have as many Includes as you want in your Config, and these can be stored in

various ways, accessed through the different Config drivers.

Parameter Substitution

Parameter Substitution is a feature that enables you to store sensitive information outside

your Config in a secure format, but still keep it configurable.

Think of the Parameter Substitution concept as global system variables that can be used

throughout your solution. Of course you can access these Parameters from your scripts,

enabling you to make your code data-driven, changing its functionality based on the value of

one or more of these Parameters. However, the most powerful use of Parameter Substitution

is as parameter values in the configuration of components, such as Connectors, Parsers and

EventHandlers.

There are two types of Parameter Substitution in TDI:

Chapter 3. The Config Editor 199

v Properties

v Advanced parameter substitution

Properties

Properties are simple keyword:value pairs of parameters kept outside your Configs, stored

instead in External Properties files. This enables you to keep confidential information like

passwords outside of your Config files.

For information about setting up and managing Properties, see “Properties” on page 194

Advanced Parameter Substitution with Expressions

Contrary to the simple, static keyword:value concept implemented in Properties, the

Advanced Parameter Substitution facility (which leverages TDI Expressions) provides

extensive capabilities to evaluate and re-format parameter values at runtime. It is allows you

to use Property settings as well as data and Config settings.

Expresions Editor

Throughout the configuration screens in TDI, select drop-down lists offer a Parameter

Substitution selection that brings up the Parameter Substitution Editor. The drop-down lists

are:

1. The Value column in the Branch Component configuration conditions panel

2. The Value column in the Loop Component configuration conditional-loop panel

3. The Value column in the LinkCriteria panel

4. The External Property drop-down in the Parameter Information dialog that is shown when

a component parameter label is clicked.

Once invoked, the Parameter Substitution Editor window appears:

200 IBM Tivoli Directory Integrator 6.1: Users Guide

Expression formatting

TDI Expressions leverage the java.text.MessageFormat class, part of the java engine under

which TDI runs. Specifically, the substitution pattern reuses the syntax and layout of

java.text.MessageFormat. Please refer to the Java API for a complete description. In general

though, MessageFormat uses placeholders in the format string to refer to the values passed as

parameters. An example copied from the JavaDocs is the following:

Object[] arguments = {

 new Integer(7),

 new Date(System.currentTimeMillis()),

 "a disturbance in the Force"

 };

 String result = MessageFormat.format(

 "At {1,time} on {1,date}, there was {2} on planet {0,number,integer}.",

 arguments);

 output: At 12:30 PM on Jul 3, 2053, there was a disturbance

 in the Force on planet 7.

Chapter 3. The Config Editor 201

The format string uses curly braces to enclose substitution and format elements:

FormatElement:

 { ArgumentIndex }

 { ArgumentIndex , FormatType }

 { ArgumentIndex , FormatType , FormatStyle }

ArgumentIndex: integer

TDI Expressions will use this format with the following additional syntax:

TDIFormatElement:

 { TDIReference }

 { TDIReference, FormatType }

 { TDIReference, FormatType , FormatStyle }

TDIReference: string

The TDI Expressions feature will parse the format string and replace TDIReference occurrences

with a sequentially increasing ArgumentIndex. For each TDIReference, the value it refers to is

added to the argument list used in the call to MessageFormat. Hence, the primary difference

between MessageFormat in its original form and Expressions is the following:

1. Each TDIReference is replaced by the next sequential value of v (where v starts with zero)

2. The object/value referenced by TDIReference is added to the argument list at the position

yielded by v

3. ArgumentIndex references refer to the n’th TDIReference starting from zero. (e.g. {2}) refers

to the third TDIReference occurrence, {3} to the fourth etc)

4. You can mix {ArgumentIndex} and {TDIReference} (see examples section) in the same pattern

Depending on the context in which parameter substitution is performed, there are a number

of runtime objects that can be referenced. The table below shows a complete list of recognized

references.

 Table 6. References

TDIReference Value Availability

work.attrname[.index] The work entry in the current AssemblyLine.

The optional index refers to the n’th value (starting at

zero) of the attribute. Otherwise the first value is

used.

AssemblyLine

conn.attrname[.index] The conn entry in the current AssemblyLine

The optional index refers to the n’th value of the

attribute. Otherwise the first value is used.

AssemblyLine during

attribute mapping

current.attrname[.index] The current entry in the current AssemblyLine

The optional index refers to the n’th value of the

attribute. Otherwise the first value is used.

AssemblyLine during

attribute mapping for

Modify

202 IBM Tivoli Directory Integrator 6.1: Users Guide

Table 6. References (continued)

TDIReference Value Availability

config.param The configuration object containing the parameter

being expanded.

param refers to another parameter in the same

configuration object.

AssemblyLine

EventHandler

Connector

Parser

Function Component

alcomponent.name.param The connection parameter value of another

AssemblyLine component.

name is the name of the AssemblyLine component

param is the parameter name of the name object

Note: This is a shortcut for

alcomponent.connector.getParam(name),

alcomponent.function.getParam(name) etc.

AssemblyLine

property[:storename]

 .name property

 [:storename/bidi].name

A TDI-properties reference.

The optional storename targets a specific property

store. The default store is used in case this parameter

is absent.

name is the property name

bidi will, when present, cause setting the parameter

value to forward the call to the referenced property

store. When bidi is present no other substitution

patterns or text is allowed.

Always

javascript<<EOF

 script code &ellipsis;

EOF

Arbitrary script code to generate a value.

The EOF is an arbitrary string that terminates the

javascript snippet. The javascript is collected up until

a single line with the EOF string is encountered.

The javascript snippet is automatically wrapped in a

function body with a single parameter that holds all

expanded values as well as all the implicitly

available objects (e.g.task, work etc). Expanded

values are named by its generated ArgumentIndex

(e.g. “0”, “1” etc)

function x(params)

Example:

 var conn = params.get(“conn”);

 var p0 = params.get(“0”);

Always

Chapter 3. The Config Editor 203

Examples

All examples show the actual substitution string without the trigger prefix/suffix strings. In a

configuration file (the XML representation of the Config), these strings would be enclosed in

@PROPERTY{<substitution-string>} - also for the simple External Properties format.

Simple: Previous versions use a single substitution mechanism where a prefix/suffix triggers

substitution based on a value from the External Properties.

 Table 7. Simple example

Input String external-property-name

Translated String {0}

Parameter Array [0] = extprop.getParameter(“external-property-name”)

Multiple Substitutions: This example shows basic substitutions with multiple arguments.

 Table 8. Multiple example

Input String uid={work.uid},{work.ldapSearchBase}

Translated String uid={0},{1}

Parameter Array [0] = work.getObject(“uid”);

[1] = work.getObject(“ldapSearchBase”);

An example with mixed references:

 Table 9. Mixed reference example

Input String cn={work.sn} or sn={0}

Translated String cn={0} or sn={0}

Parameter Array [0] = work.getObject(“sn”);

JavaScript Substitutions: This example shows complex substitutions using JavaScript where

the returned value is the “sn” attribute which is conditionally pulled from conn or work.

204 IBM Tivoli Directory Integrator 6.1: Users Guide

Table 10. JavaScript example

Input String cn={javascript<<END

if (params.get(″conn″) != null)

 return params.get(″conn″).getString(″sn″);

else

 return params.get(″work″).getString(″sn″);

END

} or sn = {javascript<<END

if (params.get(″conn″) != null)

 return params.get(″conn″).getString(″sn″);

else

 return params.get(″work″).getString(″sn″);

END

}

Translated String cn={0} or sn={1}

Generated JavaScript function x0(params) {

 if (params.get(″conn″) != null)

 return params.get(″conn″).getString(″sn″);

 else

 return params.get(″work″).getString(″sn″);

}

function x1(params) { function body above }

Parameter Array [0] = x0(params)

[1] = x1(params)

Descriptive Example: Here is a detailed description of the steps performed using the

following substitution pattern:

SELECT {javascript<<EOF

 var str = new Array();

 str[0] = "A";

 str[1] = "B";

 return str.join(",");

EOF

} FROM {property:mystore.tablename} WHERE A = ’{work.uniqueID}’

Assuming there is a TDI property store name mystore that has a property named tablename

with the value of “PEOPLE”, and a work entry with an attribute named uniqueID with a

value of “uid123”, the expansion would result in the following three steps:

1. Constructed argument array:

args[0] = ″A,B″; ←

args[1] = ″PEOPLE″; ← TDIProperties.getProperty(″mystore″, ″tablename″);

args[2] = ″uid123″; ← work.getObject(″uniqueID″);

Chapter 3. The Config Editor 205

2. Converted substitution string:

SELECT {0} FROM {1} WHERE A = ‘{2}’

3. Final result after calling MessageFormat(string, args):

SELECT A,B FROM PEOPLE WHERE A = ‘uid123’

The above example did not use any of the available MessageFormat formatting capabilities

but these are of course also available.

Schema

The “schema” for the pattern substation depends on the context in which substitution is

performed. If you call it manually, then the available objects (schema) are defined by you. The

configuration driver will perform automatic substitution when it encounters a trigger string.

The following tables list the available objects in each standard context. These objects are also

the ones passed to any embedded JavaScript function.

Note that pattern keywords are expanded automatically by TDI-PS using the provided objects.

There is no one-to-one relation between the pattern keywords and the provided objects.

Component Configuration:

 Table 11.

Object Value

config The component’s “connection” configuration object.

mc The MetamergeConfig object of the config instance

(config.getMetamergeConfig())

work The work entry of the AssemblyLine

task The AssemblyLine object

LinkCriteria:

 Table 12.

Object Value

config The component’s “connection” configuration object.

mc The MetamergeConfig object of the config instance

(config.getMetamergeConfig())

work The work entry of the AssemblyLine

conn The conn entry of the AssemblyLine

task The AssemblyLine

alcomponent The Connector component

206 IBM Tivoli Directory Integrator 6.1: Users Guide

Branch & Loop Components:

 Table 13.

Object Value

config The component’s “connection” configuration object.

mc The MetamergeConfig object of the config instance

(config.getMetamergeConfig())

work The work entry of the AssemblyLine

task The AssemblyLine

alcomponent The Branch/Loop component

Logging

For more information about Logging, see ″Logging and debugging″ in IBM Tivoli Directory

Integrator 6.1: Administrator Guide as well as “Logging and debugging” on page 167 in this

guide.

Logging which is global to the entire Config file can be configured by opening up the Config

folder in the Config Browser, and selecting the Logging item. Only the parameters that

describe how messages are logged are described here.

 All log configuration windows operate in the same way. For each one you can set up one or

more log schemes. These are active at the same time, in addition to whatever defaults are set

in the log4j.properties and executetask.properties files.

Chapter 3. The Config Editor 207

The possible log schemes are as follows:

Note: All log panels showing loggers that write to encoding enabled streams contain the

Character encoding field.

IDIFileRoller

Sometimes, you want to log to file but keep a limited number of files, as they can fill

your disks. IDIFileRoller generates a new file for each run of the Server. The system

saves only the specified number of previous logs. If your log is called mylog.txt, and

you ask for 2 generations, then after 3 runs you have a mylog.txt (last run) as well as

the files mylog.txt.1 and mylog.txt.2, where mylog.txt.2 is the oldest log. From this

point, you do not get more files, only newer versions with the same name. Keep two

generations of backup files.

 IDIFileRoller has the following parameters:

File Path

The name of the file to log to. The path is relative to where you installed IBM

Tivoli Directory Integrator The special macro {0} used in filenames is replaced

by the name of the Server. Similarly, {1} used in filenames is replaced by a

unique identifier generated by the system for you. The {1} macro has no

relevance for the special case where you use IDIFileRoller, but is important

where you want unique file names.

208 IBM Tivoli Directory Integrator 6.1: Users Guide

Number of backup files

If your File Path was mylog.txt, and you select 2 backup-files, the two

previous runs have their files renamed to mylog.txt.1 and mylog.txt.2 when

you run a third time.

Layout

Determines the format of the log message. Options are:

v Pattern (used if you want to customize the way the messages are logged)

v Simple (format containing just the loglevel and the message)

v HTML (creates an HTML file containing some (relative) time info, thread

info, loglevel, category, and message)

v XML (similar to HTML, but generates an XML file (using namespace-prefix

log4j))

Pattern

Only used when Layout is Pattern. See ″Creating your own log strategies″ in

IBM Tivoli Directory Integrator 6.1: Administrator Guide.

Log level

Severity level of the log messages. Options are (from maximum to minimum

information):

v DEBUG

v INFO

v WARN

v ERROR

v FATAL

Log Enabled

Click to enable the use of this appender.

Console

Logs to the console (standard output). This is in the window where you started the

server (ibmdisrv) or the execute task-window in the Config Editor (ibmditk). Console

has the following parameters:

Layout

See IDIFileRoller, previous.

Pattern

See IDIFileRoller, previous.

Log level

See IDIFileRoller, previous.

Log Enabled

See IDIFileRoller, previous.

File Logs to a file. File has the following parameters:

Chapter 3. The Config Editor 209

File Path

See IDIFileRoller, previous.

Append to file

Click to append log information to file. If this is not checked, the file is

overwritten.

Layout

See IDIFileRoller, previous.

Pattern

See IDIFileRoller, previous.

Log level

See IDIFileRoller, previous.

Log Enabled

See IDIFileRoller, previous.

Syslog

Enables IBM Tivoli Directory Integrator to log to Unix Syslog. Syslog has the

following parameters:

Host name/IP Address

Host to log to.

Syslog Facility

Legal facilities found in the drop-down. Must be supported by the host you

are logging to.

Print Facility String

If set, the printed message includes the facility name of the application.

Layout

See IDIFileRoller, previous.

Pattern

See IDIFileRoller, previous.

Log level

See IDIFileRoller, previous.

Log Enabled

See IDIFileRoller, previous.

NTEventLog

Enables applications to log using the Windows NT® EventHandler (on Windows

platforms). NTEventLog has the following parameters:

Layout

See IDIFileRoller, previous.

Pattern

See IDIFileRoller, previous.

210 IBM Tivoli Directory Integrator 6.1: Users Guide

Log level

See IDIFileRoller, previous.

Log Enabled

See IDIFileRoller, previous.

DailyRollingFile

DailyRollingFile saves old files with a datestamp in their names. It usually is used

with the Append to file parameter set to true. DailyRollingFile has the following

parameters:

File Path

See IDIFileRoller, previous.

Append to file

Create new file or append to existing file, depending on whether this is

checked. You usually want this on when using the DailyRollingFile.

Date Pattern

How often the file is rotated. Use the drop-down to choose resolution from

minutes to months. For example, if the File Path is set to example.log and the

DatePattern set to ’.’yyyy-MM-dd, on 2003-10-31 at midnight, the logging file

example.log is copied to example.log.2003-10-31. Logging for 2003-11-01

continues in example.log until it rolls over the next day.

Layout

See IDIFileRoller, previous.

Pattern

See IDIFileRoller, previous.

Log level

See IDIFileRoller, previous.

Log Enabled

See IDIFileRoller, previous.

MOBJ AMC shows log files generated by MOBJ loggers only. MOBJ has the following

parameters:

Pattern

Specifies the format of the log as defined by LOG4J. The default value is:

"%d{ISO8601} %-5p [%c] - %m%n"

Additional values available in the field are:

"%d{HH:mm:ss} %p [%t] - %m%n"

"%p [%t] %c %d{HH:mm:ss,SSS} - %m%n"

Log level

See IDIFileRoller, previous.

Chapter 3. The Config Editor 211

Log Enabled

See IDIFileRoller, previous.

SystemLog

Similar to the logs created by the MOBJ logger, except that this Appender creates log

files in a catalog hierarchy under <TDI_installation_directory>/system_logs. For each

Config File, there will be a corresponding directory with logfiles named AL_xxx or

EH_xxx, where xxx is the name of the AssemblyLine or EventHandler being run.

 If you want to view AssemblyLines logs using the Administration and Monitoring

Console, you must add a SystemLog Appender to the AssemblyLine.

 This Appender has the following parameters:

Pattern

Specifies the format of the log as defined by LOG4J. The default value is:

"%d{ISO8601} %-5p [%c] - %m%n"

Additional values available in the field are:

"%d{HH:mm:ss} %p [%t] - %m%n"

"%p [%t] %c %d{HH:mm:ss,SSS} - %m%n"

Log level

See IDIFileRoller, previous.

Log Enabled

See IDIFileRoller, previous.

Log Levels

Log levels can be

v ALL

v DEBUG

v INFO

v WARN

v ERROR

v FATAL

v OFF

ALL logs everything. DEBUG, INFO, WARN, ERROR and FATAL have increasing levels of

message filtration. Nothing is logged on OFF.

Note that the IBM Tivoli Directory Integrator logmsg() (i.e., task.logmsg("Hello")) calls log at

INFO level if nothing else is specified. This means that setting loglevel to WARN or lower

silences your logmsg calls as well as all Detailed Log settings.

Parameter labels in the Connector and Parser panels

If you leave the cursor on the label, a tooltip pops up, showing a short description.

212 IBM Tivoli Directory Integrator 6.1: Users Guide

Blue, cursive label text indicates that the value of this parameter has been inherited. When

you override an inherited parameter, the text label turns black.

If the value is derived from an External Property, the name of the parameter is in black

boldface; however, if this External Property is missing somehow, the name will be cursive,

bold, and in red.

If you click on the label, you get some information about the parameter, including the internal

name of the parameter. This can be useful when you want to set Connector parameters

through scripting.

Chapter 3. The Config Editor 213

214 IBM Tivoli Directory Integrator 6.1: Users Guide

Chapter 4. Web Services Suite

IBM Tivoli Directory Integrator contains a number of components collectively referred to as

the TDI Web Services Suite; its aim is to provide an environment where Web Services (WS)

can be both consumed and published. Consuming WS means that work flows in TDI can reach

out to existing Web Services, while publishing WS means that TDI work flows can be called by

other systems through the WS mechanisms.

The Web Services suite consists of the following components:

v WSReceiverServerConnector

v AxisEasyWSServerConnector

v AxisJavaToSoap FC

v WrapSoap FC

v InvokeSoapWS FC

v AxisSoapToJava FC

v AxisEasyInvokeSoapWS FC

v ComplexTypesGenerator FC

Detailed information about each of these components is available in the IBM Tivoli Directory

Integrator 6.1: Reference Guide.

TDI WS Suite philosophy

The philosophy of the TDI WS Suite is to provide a generic architecture for web service

interaction with extensibility and customization points that allows you to handle (by coding,

scripting or using specific components) any incompatibility issues that may arise. No general

assumptions are made in the architecture itself about web service style, data encoding, data

types, etc. – these can be addressed by specific components that may or may not be used in a

particular solution.

Components and tools

TDI provides different mechanisms (including Axis binding logic) for mapping XML data to

Java data and vice versa—these mechanisms facilitate or provide out-of-the box solutions of

the serialization problem described below.

TDI also provides simplified components that are easy to configure, and which you can use

out-of-the box in non-complex web service scenarios.

© Copyright IBM Corp. 2003,2006 215

This is the first set of TDI web service components. The components introduced below and

described in detail in IBM Tivoli Directory Integrator 6.1: Reference Guide provide the means to

build a complete (both client-side and server-side) web service solution in the modular TDI

web service architecture.

AxisJavaToSoap FC

 This component can be used both as a web service client and a web service server.

This component receives an Entry or a Java object and produces the SOAP request

(when on the client) or response (when on the server) message. It provides the whole

SOAP message, as well as separately the SOAP Header and the SOAP Body to

facilitate processing and customization.

 The component supports both RPC and Document style. A parameter (Mode) specifies

whether the FC is used on the client or on the server side.

WrapSoap FC

 This component generates a complete SOAP message given the SOAP Body and

optionally a SOAP Header. This is useful when you customize the content of the

SOAP Body or create it completely on your own.

 The component accepts the contents of the SOAP Body, the SOAP Header, and

attributes for the SOAP Envelope, Header and Body XML elements (usually

namespace declarations) and will create the complete SOAP message.

 This is actually a helper FC that saves you from error-prone processing of string or

DOM objects to wrap your SOAP data into a complete SOAP message.

InvokeSoapWS FC

 This FC uses a WSDL and a corresponding operation to be invoked. When called, it

requires a complete SOAP request message, and the remote operation is called with

this message. The output message is returned, but no XML-Java binding is

performed—it only returns the SOAP response message.

 To facilitate further custom XML-Java binding the FC provides on output the entire

SOAP response message, as well as the SOAP Header and the SOAP Body.

AxisSoapToJava FC

 This component can be used both as a web service client and a web service server.

This FC uses Axis’ mechanism for parsing SOAP response (when on the client) or

SOAP request (when on the server) to Java objects—as a complementary component

to the AxisJavaToSoap FC.

 It is given a SOAP response/request message and returns the parsed Java objects

either as standalone Java object(s) or capsulated in an Entry object.

 This component supports both RPC and Document style.

AxisEasyInvokeSoapWS FC

216 IBM Tivoli Directory Integrator 6.1: Users Guide

This is a ″simple″ web service invocation component. When using this FC you loose

the capability to hook custom processing, i.e. you are tied to the processing and

binding provided by Axis, but you gain simplicity of setup and use.

ComplexTypesGenerator FC

 This FC generates JAR files which contain Java classes which implement the complex

types (used by the SOAP operations in a WSDL file) and their serialization/de-
serialization to/from XML.

 The following steps are performed:

1. Generate Java source files

2. Compile these Java source files

3. Pack the Java class files into a JAR file

The JAR files generated by this FC are used by the AxisJavaToSoap, AxisSoapToJava,

AxisEasyInvokeSoapWS and AxisEasyWSServerConnector in order to

serialize/de-serialize complex types.

 This FC displays a ″Generate complex types″ button in its UI. Click this button to

generate the JAR file. This FC is only used during design time, and ignored at

run-time by the AssemblyLine.

Note: In order to be able to use this FC, you need to have a Java SDK installed; its

location must either be specified as a parameter to the FC or present in your

execution path.

WSReceiverServerConnector

 This connector processes web service requests by first passing the SOAP request to

the AssemblyLine it is embedded into, and later retrieving the result of the

AssemblyLine and sending the response back to the web service client.

 The Connector provides the entire SOAP message, as well as separately the SOAP

Header and the SOAP Body to facilitate processing and customization. The Connector

also supplies the value of the ″soapAction″ HTTP header as well as other

SOAP/HTTP request details.

 The Connector supports both RPC and Document style.

AxisEasyWSServerConnector

 This is a ″simplified″ web service server Connector. It internally instantiates,

configures and uses the AxisSoapToJava and AxisJavaToSoap FCs.

 When using this Connector you forgoe the possibility of hooking custom processing

before parsing the SOAP request and after serializing the SOAP response, i.e. you are

tied to the processing and binding provided by Axis, but you gain simplicity of setup

and use.

Chapter 4. Web Services Suite 217

Usage and scenarios

The above FCs and Server Connectors provide the functionality of Axis in the modular TDI

Web Service architecture. This gives you extension points where you can customize or

override certain parts of the Axis web service processing.

The TDI Web Services suite of components attempts to combine and provide both the

″simple″ and ″advanced″ way of invoking and providing web services with Axis-based code.

There are two independent aspects of ″simple″ and ″advanced″ use:

Simple or Complex Types

When you want to use complex types you need to generate custom Java classes with the

ComplexTypesGenerator FC, make them available to TDI (put them on the TDI classpath) and

use these classes in the business logic of your process that is before and after the web service

call (when on the client) and during the handling of the web service request (when on the

server).

But when no complex types are used, no class generation will be necessary – you will not fill

in the Complex Types FCs’ and Connector’s parameters. As a result when the web service is

simple (no complex types) – the usage is simple, when the web service is complex – the usage

is complex.

Simple or Customized workflow

The second aspect is the possibility to customize the workflow which in turn leads to heavier

setup and use – configuration of multiple FCs, scripting to tie them together.

The below functionality attempts to enable both simple and advanced/customized use.

v The AxisJavaToSoap, InvokeSoapWS and AxisSoapToJava components can be used in that order

to implement a full-featured web service client.

v The AxisSoapToJava and AxisJavaToSoap components can be used on the server to expose a

piece of functionality as a web service.

v The WrapSoap FC facilitates the creation of the SOAP request/response message before it is

passed to InvokeSoapWS/AxisSoapToJava when you have performed custom processing of the

SOAP data or have completely overridden the Axis binding mechanism.

v The ComplexTypesGenerator generates complex types from WSDL.

Using the WS Suite

Simple usage

The AxisEasyInvokeSoapWS FC that provides easy access (single component, single Config

screen, no scripting) to each service that Axis can talk to.

The AxisEasyWSServerConnector uses the AxisSoapToJava and AxisJavaToSoap FC functionality. A

limitation of this Connector is that it is tied to the Axis data binding code and no other data

binding code can be used. Another limitation of the AxisEasyWSServerConnector is that it can

218 IBM Tivoli Directory Integrator 6.1: Users Guide

only be configured to handle one SOAP operation—it cannot service several SOAP operation

requests. But apart from that the customer is free to use whatever components he likes in the

AssemblyLine that contains the Connector.

Advanced usage

Below we will describe three scenarios using a WebService Connector in Server mode that can

be modeled with the above components.

Simple operation

The WSReceiverServerConnector is embedded in an AssemblyLine. The AssemblyLine

contains the AxisSoapToJava and AxisJavaToSoap FCs. In between these two components

there are an arbitrary number of other components (Connectors, Script Components,

Branch Components, other FCs) which implement the actual logic of the web service.

In this way after the work Entry goes past the AxisSoapToJava FC it contains the Java

representation of the SOAP request message. Thus the work Entry is ready to be

processed by the core logic configured for this AssemblyLine. After this processing is

complete the AxisJavaToSoap FC converts the result to a SOAP message, which the

Connector returns to the web service client . In this scenario the

WSReceiverServerConnector provides only one WSDL operation to its clients.

Handling several WSDL operations

It is possible to configure the WSReceiverServerConnector to handle several WSDL

operations and not just one. The AxisSoapToJava FC requires the name of the WSDL

operation to be passed as a FC parameter. That is why we need to put in a Script

Component in the AssemblyLine instead of the AxisSoapToJava FC and inside this

script component to script the following: create an instance of the AxisSoapToJava FC

and set its WSDL operation; then invoke this FC’s functionality and store the result in

the work Entry as would the AxisSoapToJava FC directly in the AssemblyLine. In this

way it is possible to script your logic for choosing what to execute in response to web

service requests for different WSDL operations.

Mapping AssemblyLines to WSDL operations

 If you want to map AssemblyLines to WSDL operations, you could use the following

configuration: A WSReceiverServerConnector is configured in an AssemblyLine.

 If you know the set of operations to invoke beforehand, the AssemblyLine will

initialize a number of AxisSoapToJava and AxisJavaToSoap components with predefined

configurations. A Script Component in the AssemblyLine will analyze the operation to

invoke and will parse the SOAP request with the correct AxisSoapToJava FC. Then the

corresponding AssemblyLine will be started by the core AssemblyLine (directly or

through an AssemblyLine Connector) and the result will be passed to the correct

AxisJavaToSoap FC.

 If you do not know the set of operations to invoke beforehand, then instead of using

a set of pre-configured FCs the AssemblyLine will instantiate and configure an

AxisSoapToJava and an AxisJavaToSoap FC for each event.

Chapter 4. Web Services Suite 219

WS Suite Considerations

The most important issue to understand when building or accessing WS is that SOAP and

WSDL are not enough for a successful invocation of a web service. These standards define

the core framework for WS communication but this is not enough—there are elements of the

real invocation process that are either not specified by the standards or the standards provide

freedom to the implementations to define and use their own extensions of the standards. As a

result, when two applications successfully communicate with each other using WSDL and

SOAP there is always a direct or indirect agreement about one or more items not covered by

the standards and employed by these applications. It is these holes left by the standards that

lead to interoperability problems.

A very good example of a core communication element for which the implementations need

to make assumptions is data encoding, or how a particular data model is serialized into XML.

In fact, SOAP defines a message format, but it does not enforce data encoding. There are two

types of data encoding allowed by the standards: encoded and literal.

Encoded means that certain data model is serialized using a certain set of rules (i.e. they can

say that a hashtable is written in XML using this XML structure with these XML elements and

these XML attributes). WSDL however cannot describe these rules, it will only provide an

identifier for the encoding that the two parties must recognize and have their own logic

(which is not formally specified by the standards) for this encoding. So what if the WSDL

specifies an encoding that the web service client cannot recognize—then the client surely

cannot talk to this service. The bad thing is that even when both sides claim to support a

given encoding there is still no guarantee that they will be able to talk to each other. This is so

because the encoding rules are not 100% complete and unambiguous themselves and also

because there is no formal mechanism to verify whether a piece of XML is a valid encoded

XML.

Let’s use ″SOAP Section 5 Encoding″ as an example, the most popular set of encoding rules

and actually a synonym of encoded usage. SOAP Section 5 Encoding does not force the use of

data types, it defines the abstract concept of nodes and edges that allow serialization of a

graph data model. So an implementation of SOAP Section 5 Encoding cannot claim to marshal

that data into native types of a programming language without having another implicit

assumption being made.

The other option for data encoding – Literal encoding simply means that the parties do not

agree about data encoding but they agree about the exact format of the XML data, usually

specified through an XML Schema. The XML Schema provides a formal mechanism for

validation and automatic marshalling but again the parties need an agreement that a specific

format is mapped to a specific native language data type/structure. The XML Schema

specifies data types but even this specification cannot guarantee that these types can be used

flawlessly. For example, the XML Schema specifies that any number of digits after seconds

may be coded into a dateTime data type. However, java.util.Date supports precision up to

the nearest millisecond, while the .NET Date data type can represent a nanosecond—this

could potentially cause interoperability problems. There are similar issues with floating point

numbers and other data types.

220 IBM Tivoli Directory Integrator 6.1: Users Guide

WS Provisioning and WS Trust

In order for the TDI Web Service components to work with web services which employ

complex data types Java classes which represent these complex data types must be present in

the TDI class path. These Java classes define public getter and setter methods for their

properties/attributes, which can in turn also be instances of such Java classes. In this way a

Java representation of a complete hierarchy of complex data types can be created.

The Apache Axis library (on which the TDI Web Service components are based) provides a

tool called WSDL2Java, which given a WSDL web service definition can generate the

corresponding Java classes. This tool is used to create the Java class files for the web services

standard WS-Provisioning and WS-Trust specifications using the corresponding WSDL files.

After the Java class files are generated, they will be compiled and packaged in two JAR files

to be dropped in the TDI class path.

This enables TDI to be used as both a web service client and a web service provider for both

WS-Provisioning and WS-Trust applications.

WS-Provisioning and WS-Trust support is based on the IBM Tivoli Directory Integrator Web

Service components.

TDI supports WS-Provisioning specification version 0.7. This version of the WS-Provisioning

specification along with its schema and WSDL web service definition can be downloaded

from http://www.ibm.com/developerworks/webservices/library/ws-provis/.

TDI also supports a related web service definition, called WS-Trust - in particular the

specification labeled “February 2005”. The WS-Trust specification along with its schema and

WSDL web service definition can be downloaded from http://www.ibm.com/
developerworks/library/specification/ws-trust/.

The WS-Provisioning package “wsprov.jar” JAR file contains the compiled Java classes which

implement the data types used by WS-Provisioning. These Java classes and the Web Services

components will help you to develop or connect to a WS-Provisioning implementation. There

are three Java packages in “wsprov.jar”:

api._1._0.provisioning.ws.names.ibm

Implements types defined in the api.xsd schema, which is part of the

WS-Provisioning specification

core._1._0.provisioning.ws.names.ibm

Implements types defined in the core.xsd schema, which is part of the

WS-Provisioning specification

notify._1._0.provisioning.ws.names.ibm

Implements types defined in the “notification.xsd” schema, which is part of the

WS-Provisioning specification

Chapter 4. Web Services Suite 221

http://www.ibm.com/developerworks/webservices/library/ws-provis/
http://www.ibm.com/developerworks/library/specification/ws-trust/
http://www.ibm.com/developerworks/library/specification/ws-trust/

Mapping Java class names to WS-Provisioning XSD types

The name of each Java class matches the name of a WS-Provisioning schema type. For

example, the api._1._0.provisioning.ws.names.ibm.ListTargetsRequestType Java class

implements the type ListTargetsRequestType defined in the

urn:ibm:names:ws:provisioning:0.1:api namespace.

wsprov.jar file contents

The wsprov.jar file contains Java classes generated using the Axis WSDL2Java tool. There were

errors in some of the Java files generated by the WSDL2Java tool – these files were edited

manually to fix these errors and then all sources were compiled and packed into the

wsprov.jar file. The wsprov.jar file is located in the <TDI_install_folder>\jars\common″ folder.

WS-Provisioning examples

1. Create the input for the listTargets operation in Javascript:

var listTargetsInput = new Packages.api._1._0.provisioning.ws.names

 .ibm.ListTargetsRequestType();

When serialized this “listTargetsInput” variable will look like this:

<ListTargetsRequest xsi:type="ns1:ListTargetsRequestType"

xmlns="urn:ibm:names:ws:provisioning:0.1:api"

xmlns:ns1="urn:ibm:names:ws:provisioning:0.1:api"/>

2. Create the output for the listsTargets operation in JavaScript:

var set = new

Packages.core._1._0.provisioning.ws.names.ibm.ProvisioningTargetSetType();

var provTargetType = new

Packages.core._1._0.provisioning.ws.names.ibm.ProvisioningTargetType();

var provTargets =

java.lang.reflect.Array.newInstance(provTargetType.getClass(), 1);

var id = new

Packages.core._1._0.provisioning.ws.names.ibm.ProvisioningIdentifierType();

id.setName("WindowsNTServerAccount");

provTargets[0] = provTargetType;

provTargets[0].setIdentifier(id);

var provTargetSchema = new

Packages.core._1._0.provisioning.ws.names.ibm.ProvisioningTargetSchema();

var schema = java.lang.reflect.Array.newInstance(provTargetSchema.getClass(),

1);

schema[0] = provTargetSchema;

schema[0].setLocation("http://myhost.com/myschema.xsd");

provTargets[0].setSchema(schema);

set.setProvisioningTarget(provTargets);

var response = new

Packages.api._1._0.provisioning.ws.names.ibm.ListTargetsResponseType();

response.setTargets(set);

var result = new

Packages.core._1._0.provisioning.ws.names.ibm.ProvisioningIteratedResultType(

);

result.setSize(1);

var status = new

222 IBM Tivoli Directory Integrator 6.1: Users Guide

Packages.core._1._0.provisioning.ws.names.ibm.ProvisioningRequestStatusType()

;

status.setCode(Packages.core._1._0.provisioning.ws.names.ibm.ProvisioningStat

usCode.success);

result.setStatus(status);

response.setResult(result);

When serialized, the response will be similar to the following:

<ns2:arg0 xsi:type="ns1:ListTargetsResponseType"

xmlns:ns1="urn:ibm:names:ws:provisioning:0.1:api"

xmlns:ns2="urn:ibm:names:ws:provisioning:0.1:psp">

 <ns1:targets xsi:type="ns3:ProvisioningTargetSetType"

xmlns:ns3="urn:ibm:names:ws:provisioning:0.1:core">

 <ns3:ProvisioningTarget xsi:type="ns3:ProvisioningTargetType">

` <ns3:identifier xsi:type="ns3:ProvisioningIdentifierType"

name="WindowsNTServerAccount"/>

 <ns3:schema xsi:type="ns3:ProvisioningTargetSchema"

 location="http://myhost.com/myschema.xsd"/>

 </ns3:ProvisioningTarget>

 </ns1:targets>

 <ns1:result xsi:type="ns4:ProvisioningIteratedResultType"

 remaining="0" size="1"

 xmlns:ns4="urn:ibm:names:ws:provisioning:0.1:core">

 <ns4:status xsi:type="ns4:ProvisioningRequestStatusType">

 <ns4:code xsi:type="ns4:ProvisioningStatusCode">

 <ns4:value xsi:type="xsd:string">success</ns4:value>

 </ns4:code>

 </ns4:status>

 </ns1:result>

 </ns2:arg0>

Chapter 4. Web Services Suite 223

224 IBM Tivoli Directory Integrator 6.1: Users Guide

Chapter 5. TDI Examples

In order to work with examples complementing this manual, you can go to the

root_directory/examples directory in the installation directories.

Scripted Outlook Connector using COMProxy

The Connector described here is a re-implementation in JavaScript of the Outlook Connector

written in VBScript, in the previous example. You can find the code in the

installation_directory/examples/MSOutlook directory.

This example shows how you can manipulate your Outlook Contacts using COMProxy. It is

an example of an ibmdi.scriptconnector, and shows how you can create a script connector

that supports add, iterate, update, lookup, and delete modes.

COMProxy allows you to call COM Automation components from Java. Java Native Interface

(JNI) makes native calls into the COM and Win32 libraries. COMProxy makes use of Object

Linking and Embedding (OLE) Automation under the wraps (also knows as late binding) to

make calls to COM objects/interfaces. COMProxy also supports Moniker URLs. To obtain a

handle to a COMProxy instance use the system.createCOMInstance() method.

Note: Full documentation for the COMProxy is available in the Javadocs under the

com.ibm.di.automation package

The script code is provided below if you would like to create your own script connector and

input this data. The file msoutlook.xml is a TDI Config file with the Connector already entered

for you. If you open msoutlook.xml you will find a scriptconnector called msoutlook that

contains this script information (″config″->″script″).

You could also copy the MSOutlook.jar file to the installation_directory/jars/connectors directory,

after which it will appear in your list of available connectors to inherit from.

Example code

//

// This script implements all the necessary functions for accessing

// the Contacts register in MS Outlook.

// Assumes that the number of entries in contact folder is constant for the run

ol = system.createCOMInstance("Outlook.Application");

ns = COMProxy.call(ol,"GetNameSpace","MAPI");

contacts = COMProxy.call(ns.toObject(),"getDefaultFolder",10);

var item;

© Copyright IBM Corp. 2003,2006 225

var counter = 0;

var oldstring="";

var decode="";

var outlookEntry = system.newEntry();

function selectEntries(){

 counter = 0;

}

function getNextEntry (){

 ol = system.createCOMInstance("Outlook.Application");

 ns = COMProxy.call(ol,"GetNameSpace","MAPI");

 contacts = COMProxy.call(ns.toObject(),"getDefaultFolder",10);

 items = COMProxy.call(contacts.toObject(),"Items");

 count = COMProxy.get(items.toObject(),"count");

 counter++;

 if(counter > count){

 result.setStatus(0);

 result.setMessage("End of input");

 }else{

 item = COMProxy.call(items.toObject(),"Item",counter);

 populateEntry();

 }

}

function findEntry (){

 flt = "[" + search.getFirstCriteriaName() + "] = " + search.getFirstCriteriaValue();

 items = COMProxy.call(contacts.toObject(),"Items");

 item = COMProxy.call(items.toObject(),"Find",flt);

 if (item == null){

 result.setStatus(0)

 result.setMessage("Not found" + "--->["+ flt + "]");

 }

 else

 populateEntry();

}

function modEntry (){

 populateItem();

 COMProxy.call(item.toObject(),"Save");

}

function deleteEntry (){

 COMProxy.call(item.toObject(),"Delete");

}

function putEntry (){

 items = COMProxy.call(contacts.toObject(),"Items");

226 IBM Tivoli Directory Integrator 6.1: Users Guide

item = COMProxy.get(items.toObject(),"Add");

 if(item==null){

 result.setStatus(2)

 result.setMessage("Unabled to create item");

 return;

 }

 oldString = entry.getString("FullName");

 COMProxy.put(item.toObject(),"FileAs",oldString);

 populateItem();

 COMProxy.call(item.toObject(),"Save");

}

function populateEntry (){

 entry.setAttribute("FileAs", COMProxy.get(item.toObject(),"FileAs"));

 entry.setAttribute("FullName", COMProxy.get(item.toObject(),"FullName"));

 entry.setAttribute("Email1Address", COMProxy.get(item.toObject(),"Email1Address"));

 entry.setAttribute("Birthday", COMProxy.get(item.toObject(),"Birthday"));

 entry.setAttribute("BusinessAddress", COMProxy.get(item.toObject(),"BusinessAddress"));

 entry.setAttribute("BusinessTelephoneNumber", COMProxy.get(item.toObject(),"BusinessTelephoneNumber"));

 entry.setAttribute("BusinessFaxNumber", COMProxy.get(item.toObject(),"BusinessFaxNumber"));

 entry.setAttribute("CompanyName", COMProxy.get(item.toObject(),"CompanyName"));

 entry.setAttribute("JobTitle", COMProxy.get(item.toObject(),"JobTitle"));

 entry.setAttribute("HomeAddress", COMProxy.get(item.toObject(),"HomeAddress"));

 entry.setAttribute("HomeTelephoneNumber", COMProxy.get(item.toObject(),"HomeTelephoneNumber"));

 entry.setAttribute("HomeFaxNumber", COMProxy.get(item.toObject(),"HomeFaxNumber"));

 entry.setAttribute("MobileTelephoneNumber", COMProxy.get(item.toObject(),"MobileTelephoneNumber"));

 entry.setAttribute("Categories", COMProxy.get(item.toObject(),"Categories"));

 entry.setAttribute("LastModificationTime", COMProxy.get(item.toObject(),"LastModificationTime"));

 outlookEntry = entry.clone(entry);

}

function populateItem (){

 outlookEntry.merge(entry);

 COMProxy.put(item.toObject(),"FileAs", outlookEntry.getString("FileAs"));

 COMProxy.put(item.toObject(),"FullName", outlookEntry.getString("FullName"));

 COMProxy.put(item.toObject(),"Email1Address", outlookEntry.getString("Email1Address"));

 COMProxy.put(item.toObject(),"BusinessAddress", outlookEntry.getString("BusinessAddress"));

 COMProxy.put(item.toObject(),"BusinessTelephoneNumber", outlookEntry.getString("BusinessTelephoneNumber"));

 COMProxy.put(item.toObject(),"BusinessFaxNumber",outlookEntry.getString("BusinessFaxNumber"));

 COMProxy.put(item.toObject(),"JobTitle", outlookEntry.getString("JobTitle")) ;

 COMProxy.put(item.toObject(),"CompanyName", outlookEntry.getString("CompanyName")) ;

 COMProxy.put(item.toObject(),"HomeAddress",outlookEntry.getString("HomeAddress")) ;

 COMProxy.put(item.toObject(),"HomeTelephoneNumber", outlookEntry.getString("HomeTelephoneNumber")) ;

 COMProxy.put(item.toObject(),"HomeFaxNumber", outlookEntry.getString("HomeFaxNumber")) ;

 COMProxy.put(item.toObject(),"Categories", outlookEntry.getString("Categories"));

 if (outlookEntry.getString("Birthday")!=null && !outlookEntry.getString("Birthday").equals(" "))

 COMProxy.put(item.toObject(),"Birthday", outlookEntry.getString("Birthday"));

}

Chapter 5. TDI Examples 227

See also

″Script Connector″ in IBM Tivoli Directory Integrator 6.1: Reference Guide.

JavaScript Connector

This example shows how to write a Connector using a script language. The example uses

JavaScript and shows the objects available and how they are used.

This is about as simple of a connector as you can create. It supports Iterate mode only. All it

does is count from 0 - 100. When counter reaches 100, a return message is sent ″End of input″.

Example code

//

// Place intialiazation code before function declarations.

//

var counter = 0;

function selectEntries()

{

}

function getNextEntry ()

{

 if (counter > 100) {

 result.setStatus (1);

 result.setMessage ("End of input");

 return;

 }

 entry.setAttribute ("counter", counter);

 counter++;

}

function modEntry ()

{

}

function deleteEntry ()

{

}

function findEntry ()

{

}

function putEntry ()

{

}

See also

″Script Connector″ in IBM Tivoli Directory Integrator 6.1: Reference Guide.

228 IBM Tivoli Directory Integrator 6.1: Users Guide

JavaScript Parser

This example shows how to write a Parser using a script language. The example uses

JavaScript and shows the objects available and how they are used.

Example code

//

// This is a simple Parser that returns one line at a time from

// the input stream.

//

var counter = 0;

function writeEntry ()

{

 var names = entry.getAttributeNames();

 for (i = 0; i < names.length; i++) {

 out.write (name[i], entry.getString(name[i]));

 out.write (13);

 out.write (10);

 }

}

function readEntry ()

{

 var str = inp.readLine();

 if (str == null) {

 result.setStatus (0);

 result.setMessage ("End of input");

 return;

 }

 counter++;

 entry.setAttribute ("line", str);

 result.setStatus (1);

}

See also

″Script Parser″ in IBM Tivoli Directory Integrator 6.1: Reference Guide.

Writing a new Connector Interface

There are generally two ways of writing new Connectors. The first way is to write a script

that implements a set of functions using your favorite scripting language. The second way is

to write the Connector Interface using Java.

Script-based Connector

Read the documentation for the ″Script Connector″ in IBM Tivoli Directory Integrator 6.1:

Reference Guide and also take a look at “Scripted Outlook Connector using COMProxy” on

page 225. The example you the necessary information to roll your own Connector. The

Chapter 5. TDI Examples 229

VBScript Connector is written in Microsoft’s VBScript language, which is supported by the

Bean Scripting Framework (BSF) and Windows Scripting Host (WSH) extension, and will

become obsolete when the support for these extensions is dropped in a future version of TDI.

The example written in JavaScript is a direct replacement for the VBScript example.

Java-based Connector

Learning by example is probably the best way to learn new things. Here, knowledge to the

Java programming language is really useful. Source code for a Connector that can read

directories and return filenames contained in those directories is provided in the

install_directory/examples/connector_java directory, and the process of transforming this example

into a Connector that TDI can used is described in the appendix, ″Implementing your own

Components″ in IBM Tivoli Directory Integrator 6.1: Reference Guide.

Copying directories with the LDAP Connector

Usually, the best way to do this is to export using LDIF from one server, and then importing

it to the other. However, if you want to do this using IBM Tivoli Directory Integrator to get

some more control, read on.

You can do the copying by having a very simple AssemblyLine containing two Connectors:

1. An Iterator Connector (reading the source directory) using a one level scope

2. An AddOnly Connector (updating the target directory)

Naturally a recursion must be introduced to copy the entire tree. We start the same

AssemblyLine over and over, but the search base can be set to whatever DN has just been

inserted in the target directory:

for all entries returned in current level

 add entry in target system

 if (success)

 start same AssemblyLine with search base level set to current’s entry DN

The starting of AssemblyLines can be made parallel to make the processing faster. Of course

the number of threads can explode but it is possible to control it. Because the Config Editor

sets the -w parameter you must start IBM Tivoli Directory Integrator from the command line

ibmdisrv -rDumpDir -cDumpDirectory.cfg

The code customizing is done in the following:

v the AddOnly Connector (on_success hook:It starts a new AssemblyLine with an initial entry

that the Prolog picks up)

v in the AssemblyLine Prolog (Before Connectors Initialized).

230 IBM Tivoli Directory Integrator 6.1: Users Guide

Chapter 6. TDI Command line options

Command line options must have their value followed immediately after the option. Do not

use a space between the option and the value. There are options for:

v “Config Editor,”

v “Server.”

v “Command Line Interface (CLI)” on page 234

Config Editor

ibmditk -v

Show the Config Editor’s version, and exit.

ibmditk [-s solutiondir] [-?] [filename]

-s Specifies the working directory where the solution is located. All relative file

references in TDI and in your Configs etc. will be relative to this location. Must be the

first parameter specified.

-? Prints a usage message, showing all options in brief.

filename

You can have 0 or more filenames that contain legal configuration files.

Server

The following are command line options for the IBM Tivoli Directory Integrator Server

(ibmdisrv [options]):

Example:

ibmdisrv -c"C:\demos\rs.xml" -r"Access2LDAP" -l"c:\metamerge\mydemo.log"

Notes:

1. There is no space between the option letter and the value. Use quotes to save against

possible spaces or commas in the values.

2. The Windows Shell executive allows a maximum of nine (9) arguments, from the list

below. There aren’t any limitations on other platforms.

-s <dir>

Specifies the working directory where the solution is located. All relative file

references in TDI and in your Configs etc. will be relative to this location. Must be the

first parameter specified.

© Copyright IBM Corp. 2003,2006 231

-c <file...>

Configuration file(s). If you don’t specify this option, the items in the Autostart folder

will be loaded and started (unless suppressed by specifying –D). Wildcards, as in

*.xml, are allowed too.

-n <encoding>

Encoding to be used to write Config files. This must be a valid character set identifier

valid in Java2; refer to the IANA Charset Registry (http://www.iana.org/
assignments/character-sets) for the full list of values. Note that Java2 only supports a

subset of those.

-r <al...>

List of AssemblyLine names to start. To start AssemblyLine a and b, use the

command -r a b. Other syntaxes are supported as well: -ra,b; -ra -rb.

Note: If you use includes and namespaces, the AssemblyLine can be

myNamespace:/AssemblyLines/alName (assuming namespace myNamespace

and AssemblyLine name alName).

-t <eh...>

List of EventHandler names to start. To start EventHandler a and b, use the command

-t a b. Other syntaxes are supported as well: -ta,b; -ta -tb.

-T<name>

Enable JLOG-style tracing to file trace<name>.log, in directory

<Tivoli_Common_Dir>/TDI/logs/. Default is trace to memory (from which it can be

retrieved by the traceback routines of JFFDC in case of an unhandled exception.)

-D Flag to disable startup of EventHandlers and/or items in the Autostart folder.

-w If -r (or -t) is specified then this flag causes IBM Tivoli Directory Integrator to wait for

each AssemblyLine’s EventHandler to complete before starting the next. If this flag is

not specified then IBM Tivoli Directory Integrator starts all AssemblyLines specified

by the -r parameter in parallel. When the last AssemblyLine and explicitly started

EventHandler has finished, the server stops.

Note: The server stops when it has no active threads. However, we have experienced

that with Perl, the Perl task is counted as an active thread. Use -w to force IBM

Tivoli Directory Integrator to stop after the last AssemblyLine has finished.

-e Specifying this option causes the Server to run in Secure mode. Using the master

password specific to this server, it will decrypt and encrypt all Config files as well as

the Server API Registry.

-v Show version information and exit. This is logged in the logfile only.

-P <password>

Password if configuration file(s) is/are encrypted.

-p Dump Java properties on startup. Note that you still must provide a configuration

file, which is read before Java properties are dumped.

232 IBM Tivoli Directory Integrator 6.1: Users Guide

http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets

-m Start the Administration and Monitor Console (AMC) server. Also start the MOBJ

interface. See ″Administration and Monitor Console″ in IBM Tivoli Directory Integrator

6.1: Administrator Guide for more information about AMC.

-M Disables MOBJ (the management extension) and AMC, regardless of the setting in

global.properties.

-d Start a ″daemon″, or Config Instance on this machine. The server starts one thread for

each Config specified, plus one extra thread. None of the threads will terminate.

-Z Instruct the AssemblyLine to act as if the Checkpoint Table was empty. All ALs given

on the command line will clear their checkpoint tables.

-q Takes 1 argument, mode. Mode=1 means run in record mode, mode=2 means run in

playback mode.

-l <file>

Log file (default console output). Does very little as few messages go to the console.

To change the logfile for most of the logging, change log4j.properties.

-R Disables the Remote API, regardless of the setting in global.properties.

-W All Configs are started in the same thread, and they do not terminate but rather wait

forever.

-S This option is for internal use for communication between the Config Editor and a

Server only; it is used to pass Config Files between them. Do not use this option

yourselves.

-f <extProp1=file1, extProp2=file2>

This option specifies a user-defined, external Property Store. extProp is the name of the

external Property Store. file specifies from where to read the properties.

-i This options specifies that the TDI server ignores any properties from the

global.properties file, and reads only the solution.properties file. This option can

be used when the global.properties file is unreadable - for example, when the

encoding the TDI server is started with is different from the encoding of

global.properties.

-? Prints a usage message, showing all options in brief.

When IBM Tivoli Directory Integrator ends it returns an exit code which is one of the

following:

0 User started IBM Tivoli Directory Integrator with -v parameter (show info and exit)

1

v Cannot open logfile (-l parameter)

v Cannot open config file

v Stopped by admin request

Chapter 6. TDI Command line options 233

2 Exit after auto-run. When you start IBM Tivoli Directory Integrator specifying -w IBM

Tivoli Directory Integrator runs the AssemblyLines specified by the -r parameter and

then exits.

Note: AssemblyLines run from the Config Editor are started in a different way and

will not exit with status 2.

9 License expired or invalid (obsolete).

Command Line Interface (CLI)

TDI 6.1 offers a stand-alone command line tool for accessing and controlling a local or remote

TDI Server. This tool allows you to connect to a running Server and then start and stop

Configs and ALs, reload Configs, query status, read and set properties, send events and shut

down the Server. This program is located in the <TDInstallation>/bin folder and is called

tdisrvctl. It offers a complete usage display if you fire it up without parameters (or with

invalid ones).

Some typical examples of usage are:

v tdisrvctl –op status

which results in a listing of loaded Configs, as well as the status of all ALs and EHs.

v tdisrvctl –op report –c “c:/tdiwork/MyConfig.xml”

which produces a textual report of the Config specified.

Note: The default host and port are used (localhost:1099). Also, for the “op report” example

above, note that you must enter the full path to the Config, except if this Config is

located in the TDI Configs folder (specified by the api.config.folder Global/Solution

property). You can request the list of Configs stored in the Configs folder with the

following command

tdisrvctl –op report –l

This will return a list of Config files found for that Server.

234 IBM Tivoli Directory Integrator 6.1: Users Guide

Appendix A. Enhancements and changes in 6.1

Introduction

This chapter briefly touches upon significant changes and new features of this release.

Although these following sections are not exhaustive, they will give you a quick overview to

how changes in this version have been designed to support one or more of the above goals.

Compatibility

Replace of Rhino JavaScript with IBMJS

The only requirement that may cause some compatibility issues is the replacement of the

Rhino JavaScript engine with the IBM jsengine. Great care has been taken to minimize

possible compatibility issues, and the IBM jsengine is being updated as issues are found. See

page 16 for more information on this change.

TMSXML format for all messages

Problem Determinatino Serviceability Enhancements have been introduced, including

TMSXML formatting of messages for all TDI components (Connectors, EventHandlers,

Parsers, etc). In TDI 6.1, the TMSXML format messages are automatically converted to

properties file during the build process. Regardless, TDI 6.1 components may be dropped into

TDI 6.0 build.

See the IBM Tivoli Directory Integrator 6.1: Messages Guide for more information.

Cloudscape/Derby upgrade

The database bundled with TDI, and used by default to provide System Store functionality,

has been upgraded to the latest version, Derby version 10.1. As a result, existing Cloudscape™

database must be converted to the newest db level. This is handled by the installer for the

standard “Cloudscape” directory (default System Store setup), which results in a new

“TDISysStore” directory/database after completed conversion. The conversion utility – which

is found under the “tools\CSMigration” folder of the installation directory – can also be run

manually for any other databases that you need to convert:

migrateCS <oldCSdirectoryDB> <newCSdirectoryDB>

Note that the new CS directory/db must be different from the old one.

Tombstones

The new Tombstone Manager creates a tombstone for each AssemblyLine as it terminates.

This marker stores a timestamp, as well as the AL exit status and other information.

© Copyright IBM Corp. 2003,2006 235

See the "Tombstone Manager" chapter in the IBM Tivoli Directory Integrator 6.1: Administrator

Guide for more information.

New Hooks

New Hooks for Function Components

Several new hooks were added to Function Components. See“Function Components” on page

74 for more information.

Operation Abandon Hook

A new Hook was added for add operations, ″On No Add″, which is called when the Entry to

add (i.e. the conn object) is empty. This Hook is available only in Update mode. See “List of

Hooks” on page 67 for more information.

Changes for Add operations (AddOnly and Update modes):

TDI no longer throws an ignoreEntryException when the attribute map is explicitly empty, as

it used to do. Instead, flow goes to the Before Add Hook where Attributes can be added to

conn via script. If conn is still empty after the Before Add Hook, then the new On No Add

Hook (internal name: abandon_add) is called. At the same time, TDI logs a warning about an

explicitly empty map (again, only if conn remains empty).

Note: The On No Add Hook is available only in Update Mode

Changes for modify operations (Update mode):

TDI no longer throws an ignoreEntryException when the attribute map is explicitly empty, as

it used to do. Instead, flow goes to the Before Applying Changes Hook where Attributes can

be added to conn via script. Note that this Hook will only be called if Compute Changes is

turned off; or if there are changes that need to be written. If conn is still empty after the

Before Applying Changes Hook, then the On No Changes Hook is called. At the same time,

TDI logs a warning about an explicitly empty map (again, only if conn remains empty).

JavaScript

The integration of the IBM jsengine with TDI requires changes to the

com.ibm.di.script.ScriptEngine. That Java class is used by all components where a script

engine is required. To choose between Rhino and IBMJS, a system property

com.ibm.di.ibmscriptengine defines which script engine to use. If the system property is true

then IBM JSengine is used. This property is read at startup time and is immutable which

means the specified engine is used in all script instances.

The use of the IBM JSengine is optimized in that ScriptEngine saves the “compiled”

expressions derived from evaluating a JavaScript code segment. Hence, ScriptEngine provides

similar functionality to Rhino for enhancing execution speed. The TDI ScriptEngine (which

wraps the JSengine inside TDI) works in the same way as it did with Rhino, so your ALs

won’t notice any difference.

236 IBM Tivoli Directory Integrator 6.1: Users Guide

Advantages of the IBM JSengine include:

v Better platform for debugging features. Many of the new Debugger/Stepper features are

possible because of the jsengine.

v The eval() method now also allows registration of functions, not just variables as it did in

Rhino.

v Improved error messages .

Improved error messages

The IBM JSengine JavaScript engine (jsengine) provides better clear and precise error

messages (where possible). To facilitate finding syntax errors, the error message and the

exception from the IBMJS engine are displayed. It also shows the line and column numbers in

the script. Example of jsengine information displayed: If your script had the following code in

its third line:

this is an error;

Then the following error information is displayed.

com.ibm.jscript.parser.ParseException: Syntax error at line 3, column 6. Invalid ’is’.

The first error encountered in the above line was ”is”, since ”this” is a reserved word in

JavaScript.

No support of script languages other then JavaScript

It is no longer possible to choose the scripting language for a component or AssemblyLine.

Scripting is always done in JavaScript.

Library Loader enhancements

In addition to providing a manual method for the customer to be able to specify a single

additional directory to pick up libraries from that are loaded by TDI, specific files and

directories of jar files can be configured. In addition, the organization of the jars directory has

been changed to provide better organization of class files.

Custom specification of JAR files

The previous version provided a property, “com.ibm.di.loader.userjars”, for specifying a single

directory containing jar files. This property is extended in 6.1 to allow solution builders to

specify more than one directory or jar file, separated by the java property ″path.separator″.

The “path.separator” is ″:″ on UNIX/Linux platforms and ″;″ on Windows platforms.

Directories are searched recursively by the TDILoader for jar files containing classes and

resources. The TDI loader behaves otherwise as it always has, and only files with a ″.zip″ or

″.jar″ extension are searched.

A new method to UserFunctions, loadJarFile(String) has also been added. The method allows

a user to dynamically add jar files while running TDI. The String parameter can be either a

single jar file or a directory containing jar files (or new directories, which are searched

recursively). For example,

Appendix A. Enhancements and changes in 6.1 237

system.addLoaderJarFile("c:\\myjardirectoy");

Note: JAR files added using the com.ibm.di.loader.userjars or the loadJarFile() method, cannot

contain idi.inf files (the information in the idi.inf files will not be used, and is only read

during initial loading at system startup). JAR files containing such information must be

placed in the jars folder. This is because of the way TDI constructs the system

namespace today.

Restructuring of the TDI “jars” sub-directory

The TDI ”jars” directory has been restructured. The JAR files in this folder have been moved

into subdirectories to organize them better and the TDILoader has been updated to

understand the directory changes.

The following specifies the new directory structure under the ”jars” directory and what JAR

files go under each category:

connectors

Contains all TDI Connector JAR files.

eventhandlers

Contains all TDI EventHandler JAR Files.

functions

Contains all TDI Function Component JAR Files.

parser Contains all TDI Parser JAR files.

plugin

JAR files needed for the TDI server to communicate with the plugins.

common

The core server JAR files.

patches

Used to hold patch JAR files for the support stream.

3rdparty\IBM

Contains all of the JAR files our product needs from other IBM products.

3rdparty\others

Contains all of the JAR files our product needs from non-IBM products.

ce Contains the JAR files that are needed by the CE and not the server

The TDILoader has been updated to first search the directories in the following order in every

directory:

1. patches

2. common

3. connectors

4. eventhandlers

238 IBM Tivoli Directory Integrator 6.1: Users Guide

5. functions

6. parsers

7. plugins

When looking for a class, TDI uses the first instance found. Since the order is now specified

(it was not specified earlier), it now possible to drop fixed components and other jars into the

“patches” sub-directory, overriding installed classes. This makes it easy to test patches without

corrupting an installation (or having to make backup copies of .jar files first). Furthermore,

this makes it easy to see if an installation has any patches installed, since they are all in the

same place.

TDI Server Hooks

The TDI server and configuration instances provide a method for TDI components to invoke

custom Server-level Hooks. A Server Hook is a function name that is defined in a script file.

Function implementations are provided by simply dropping script files in the “serverhooks”

directory of the solution directory.

See “Server Hooks” on page 75 for more information.

Loop/Branch/Switch

ELSE-IF and ELSE logic for Branches had been added. See 7 for more information.

New keywords for the system.exitBranch() call have been added for Loops and Branches. See

“Exiting a Branch (or Loop or the AL Flow)” on page 13 for more information.

Loops have been updated with a new continue method, as well as new keywords . The

following new methods are available in the system object (UserFunctions):

void continueLoop() throws com.ibm.di.exceptions.ContinueLoopException

void continueLoop (String name) throws com.ibm.di.exceptions.ContinueLoopException

Both of these methods throw the following exception:

com.ibm.di.exceptions.ContinueLoopException.

This exception causes the LOOP to continue. In case a loop name is provided, the program

flow is transferred to the LOOP component with that name.

There is a new Switch component providing functionality for implementing AL Operations.

See “Switch/case component” on page 37 for more information.

Improve termination and cleanup for critical errors

There are a number of TDI methods which allow catching and handling of TDI internal errors

as well as errors occurred in TDI Connectors, Parsers, Function Components, EventHandlers.

These methods comprise:

Appendix A. Enhancements and changes in 6.1 239

v Error hooks, in which Javascript code can be written to handle an error - this method is

accessible to TDI users

v Java try-catch-finally blocks, which make sure that a minor failure does not break the TDI

server as well as that all errors are handled appropriately – such blocks are already put in

place in the core TDI server classes

The new JVM Shutdown Hook feature improves the reliability of the TDI server. Java

shutdown hooks allow a piece of code to perform some processing after Control-C is pressed,

or when the Java Virtual Machine (JVM) is shutting down for some other reason, even

System.exit.

Users can specify an external program to be started when the JVM is shutting down. This

external program is started from within the JVM shutdown hook. This external program is

configured via an optional property in the global/solution.properties file:

 jvm.shutdown.hook=<external application executable>

Shell scripts and batch-files can also be specified as the value of this property.

When the JVM shutdown hook is called, nothing can be done to prevent the JVM termination.

However, with the execution of an external program it is possible to perform customizable

operations: e.g. sending a message that the TDI server has been terminated, carrying out

cleanup operations, or even restarting a new TDI server if so desired.

Custom exit/return codes

A new method has been added to the com.ibm.di.server.RSInterface interface:

shutdownServer(int aExitCode). This new method is available in JavaScript through “main”

variable, which references RSInterface and offers functions like runAL(). The specified

aExitCode is then passed to the process that started TDI, allowing the caller to react to

different exit codes, for example, in the script or batch-file used to launch TDI.

Access via TDI API calls

The Server API Session interfaces is extended to provide the shutDownServer(int aExitCode)

method. The invocation of this method will result in termination of the TDI Server with the

supplied exit code.

A new method shutDownServer(Integer aExitCode) has been added to DIServer MBean so

that it can be accessed from the JMX context as well.

The com.ibm.di.server.RSInterface has gained a new method to terminate the TDI Server with

a specific exit code:

 /**

 * Set the shutdown request flag and specify an exit code

 */

 public void shutdownServer (int aExitCode);

New methods are also added to the following Server API Interfaces:

240 IBM Tivoli Directory Integrator 6.1: Users Guide

com.ibm.di.api.local.Session

 /**

 * Shuts down the TDI Server with the specified exit code.

 * @throws DIException if an error occurs while shutting down the server.

 */

 public void shutDownServer (int aExitCode)

 throws DIException, RemoteException;

com.ibm.di.api.remote.Session

 /** * Shuts down the TDI Server with the specified exit code. *

@throws DIException if an error occurs while shutting down the server.

 */ public void shutDownServer (int aExitCode) throws DIException,

RemoteException;

com.ibm.di.api.jmx.mbeans.DIServerMBean

/** * Shuts down the TDI Server with the specified exit code. *

@throws DIException if an error occurs while shutting down the server.

 */ public void shutDownServer (Integer aExitCode) throws DIException;

Securing Configs, passwords and sensitive data

TDI saves configuration information in an XML file (Config file) which contains clear text for

all configuration values. This often includes sensitive information like passwords. With

version 6.1, TDI not only supports encryption of the entire configuration file, but also

protecting individual values or settings.

This release can also be set up to automatically handle any component parameters tagged as

passwords. Values entered into these configuration fields are delegated to the specified

Password Property Store . The parameter itself is then set with an Expression that references

the newly created password property. So, as passwords are entered or changed in the

password field, the are actually value is never visible or stored in the Config itself.

Note that changes will not be made to existing Configs. If you want previously defined

Config password parameters stored in the Password Store as well, then you must define a

Password Store and re-enter the passwords themselves.

Default and user-defined parameter protection

The password protection mechanism is directly related to the configuration panels offered to

the user. The configuration panels, or forms, contain descriptions of each parameter and its

syntax. See the "Security and TDI" chapter in the IBM Tivoli Directory Integrator 6.1:

Administrator Guide for more information.

New API methods

The following methods have been added to the com.ibm.di.entry.Attribute and

com.ibm.di.entry.AttributeInterface classes:

public void setProtected(boolean protect)

If the parameter is true, try to protect the Attribute values by not dumping them in log files.

public boolean getProtected()

Appendix A. Enhancements and changes in 6.1 241

Returns true if the values should not be dumped in log files

The following method was added to the com.ibm.di.entry.Entry class:

public void setAttribute (Object name, Object value, Boolean protect)

Where Object name is the attribute name and Object value is the attribute value. If this

parameter is null, then the attribute is removed. If the Boolean protect parameter is true, do not

dump the Attribute values in log files

The following method was added to com.ibm.di.server.TaskCallBlock:

public void setConnectorParameter (String connectorName, Object parameterName,

Object parameterValue, Boolean protect)

If the Boolean protect is set to true, do not write the value of the parameter in log files

Methods that have been modified to not dump protected Attribute values:

v Log.dumpEntry(Entry e) - This will also affect, for example, the dump() and

dumpEntry() methods in AssemblyLine (task) and RS (main).

v Attribute.toString() - Which also affects Entry.toString()

v Attribute.toDeltaString() - Which also affects Entry.toDeltaString()

v TaskCallBlock.setConnectorParameters (AssemblyLine task)

Also modified

v Entry.mergeAttributeValue(Object p1, AttributeInterface p2) - If either Attribute is

protected, the merged Attribute is protected.

v Entry.merge (Entry e, boolean mergevalues) - Make sure merged Attributes are protected

if either of the old Attributes are.

Sensitive data in logs and traces

TDI solution builders need a way to protect sensitive data, such as passwords, from being

printed in clear text when tracing on the solution is needed. Therefore in TDI 6.1 some of the

methods dealing with the Attribute class have been enhanced to say whether an attribute is

protected or not.

See the "Security and TDI" chapter in the IBM Tivoli Directory Integrator 6.1: Administrator

Guide for more information.

Autocommit for the Delta Engine

In previous TDI versions (pre-6.1), snapshots written to the Delta Store (a feature of the

System Store) during Delta Engine processing were committed immediately. As a result, the

Delta Engine would consider a changed entry as handled even though processing the AL

Flow section failed .

242 IBM Tivoli Directory Integrator 6.1: Users Guide

This limitation has been addressed in 6.1 through a new parameter – ″Commit″ – that has

been added to the Connector Delta tab. The setting of this parameter now controls when the

Delta Engine commits snapshots taken of incoming data to the System Store.

See “Delta” on page 186 for more information.

Server API Notification Enhancements

The Server API has been enhanced in several areas, including authentication. locking of

Config files, custom notifications, Server shutdown events and documentation. These

improvements are described in the following sections.

Server API Script Object

In order to make script access to the API easier, a new “session” variable is now available that

references a local session to the TDI Server.

See the "Server API" chapter in the IBM Tivoli Directory Integrator 6.1: Reference Guide for more

information.

Remote Config Editing

Loading a remote Config for editing is a new concept in TDI 6.1 and operates differently than

opening a remote Config in TDI 6.0. Configurations loaded for editing are not started in the

usual way on the TDI Server. There are now two options for loading a configuration for edit:

v Either the configuration is only loaded for editing and cannot be started at all.

v Or the configuration is loaded for editing and a temporary Config Instance is started on the

Server so that the configuration can be tested while being edited.

See “Remote” on page 140 for more information.

TDI Config Folder

A new TDI Server property api.config.folder is now available in Solution/Global Properties

for specifying a folder on the local disk. This folder (and its sub-folders) is where Configs that

can be browsed and loaded via the API are stored.

See the "Server API" chapter in the IBM Tivoli Directory Integrator 6.1: Reference Guide for more

information.

Load for editing

TDI 6.1 does not allow modification of the Config object of an active Config Instance. Server

API users will still be able to get the Config object for an active Config Instance, but the

following calls for setting the Config object and saving it on the disk will throw an exception

when executed on a normal running Config Instance.

See the "Server API" chapter of the IBM Tivoli Directory Integrator 6.1: Reference Guide for more

information.

Appendix A. Enhancements and changes in 6.1 243

Configuration locking

The Server API internally tracks all configurations loaded for editing. When another Server

API user requests a configuration already loaded for editing, the method call will fail with

exception.

A new Server API call has been added for checking whether a configuration is currently

loaded for editing (locked). The lock on a configuration is released when the user that loaded

the configuration for editing saves it back or cancels the update.

See the "Server API" chapter of the IBM Tivoli Directory Integrator 6.1: Reference Guide for more

information.

Load for editing with temporary Config Instance

This is a special version of the “load for edit” mechanism that causes a temporary Config

Instance to be started as well. This allows for testing of the Config and its AssemblyLines

while they are being changed, providing valuable functionality to tools like the TDI Config

Editor.

See the "Server API" chapter of the IBM Tivoli Directory Integrator 6.1: Reference Guide for more

information.

New Server API event for configuration update

A new Server API event “di.ci.file.updated” is fired whenever a configuration that has been

locked is saved on the TDI Server.

This feature allows Server API clients to get notified on changes in Configs they are using, for

example to reload them in order to run the latest version.

See the "Server API" chapter of the IBM Tivoli Directory Integrator 6.1: Reference Guide for more

information.

New API calls

All configurations are identified through the relative file path of the configuration file

according the TDI Server configuration Config folder. All paths specified as parameters are

relative to Config folder itself (so “./” references the folder specified by the “api.config.folder”

property).

See the "Server API" chapter of theIBM Tivoli Directory Integrator 6.1: Reference Guide for more

information about the new calls that have been added to the local and remote Server API

Session objects, as well as the JMX interfaces.

Server shutdown event

A new Server API event notification has been added to signal Server shutdown events. This

event is available to Server API clients and JMX clients, both in local and remote context, and

is of type di.server.stop for both the Server API and JMX notification layers.

244 IBM Tivoli Directory Integrator 6.1: Users Guide

See the "Server API" chapter of the IBM Tivoli Directory Integrator 6.1: Reference Guide for more

information.

Custom server API event notifications

Server API functionality has been added for sending custom, user-defined event notifications.

See the "Server API" chapter of the IBM Tivoli Directory Integrator 6.1: Reference Guide for more

information.

Authentication

In addition to previously supported authentication based on an SSL channel with client side

authentication, now offers a new option for using custom authentication. Furthermore, SSL

client authentication can be switched off.

See the "Security and TDI" chapter of the IBM Tivoli Directory Integrator 6.1: Administrator

Guide for more information about authentication.

Remote Config Editor SSL Enhancement

In TDI 6.0 the Remote Config Editor panels contained a check box labeled SSL. Users of the

Remote Config Editor were supposed to specify whether SSL is enabled on the TDI Server.

Actually the SSL option was not used for creating the connection, but was instead used by

another piece of Remote CE functionality – running remote AssemblyLines and

EventHandlers, as well as receiving their logs.

In TDI 6.1 the SSL option is added to the Config Editor panels. In addition, a new method is

added to the Server API Session Interface:

public boolean isSSLon();

This method will return true if the current Session is over SSL.

The Remote Config Editor has been updated to use this new Server API method instead of

forcing users to provide the SSL parameter thus reducing confusion and improving usability.

Furthermore, the New Remote Config dialog is updated to support the new authentication

options, providing parameters for setting user name and password

Server API Authentication Exception

When custom authentication is used and the script specified by the user indicates that the

authentication has failed, an exception of type

com.ibm.di.api.exceptions.AuthenticationException is thrown by the createSession(username,

password) method.

See the "Security and TDI" chapter of the IBM Tivoli Directory Integrator 6.1: Administrator

Guide for more information about authentication.

Appendix A. Enhancements and changes in 6.1 245

Server API JMX layer does not support custom authentication

The remote JMX layer of the Server API does not support the custom authentication

mechanism. It will ignore the api.custom.authentication property. See the "Security and TDI"

chapter of the IBM Tivoli Directory Integrator 6.1: Administrator Guide for more information

about authentication.

External properties file from command line

External property files can now be specified from the command line when starting a TDI

Server.

A new optional command line parameter [-f] can be used with the “ibmdisrv” server startup

scripts.

The format of the command line argument is formed in key-value pairs in the following way:

-f <extProp1=file1, extProp2=file2>

WhereextProp is the name of the external Property Store. file specifies from where to read the

properties.

When the [-f] option is used to specify a properties file from the command line, the server

changes the Property Store configuration in memory only, i.e. the server does not make this

change permanent by changing the TDI Config file on disk – this change is valid for the

current run of the TDI server.

If any property files are specified at the command line, they are valid only for the Config

Instances specified with the [-c] command line option (which are loaded on TDI server

startup). The property files specified at the command line do not have any impact on Config

Instances which have not been explicitly named with the [-c] command line option (these can

be Config Instances loaded by remote Server API client for example).

If a Property Store whose name has been specified with the [-f] command line switch cannot

be found in a Config Instance, an error message is logged in the server log (ibmdi.log in the

Install-directory.

When a Property Store name is specified more than once with the [-f] command line switch

then there are two effects: (1) a warning message is logged, and (2) the file specified last will

take effect.

This feature is implemented in the com.ibm.di.server.RS Java class (referenced via the main

variable when scripting). After the reload() method is called the MetamergeConfig object is

loaded and for each Property Store specified on the command line the corresponding

PropertyStoreConfig object is updated.

246 IBM Tivoli Directory Integrator 6.1: Users Guide

Logging and Problem Determination Enhancements

Character encoding for all File Appenders

All panels showing loggers that write to encoding enabled streams have an extra parameter

that lets the user define the character encoding for the stream.

Custom Appender support

Log4j allows logging requests to print to multiple destinations. In log4j speak an output

destination is called an appender. TDI Server supports several appenders (IDIFileRoller

Appender, Console Appender, File Appender, Syslog Appender, NTEventLog Appender,

DailyRollingFile Appender, SystemLog Appender). The current TDI logging environment

cannot be extended with additional appenders. The TDI Server is enhanced so that you can

add your own custom Appenders. Custom Appenders are defined with a system property in

global.properties/solution.properties file:

custom.appender.<CustomAppenderName>=<CustomAppenderClass> [CustomFormUserInterfaceClass]

where:

v CustomAppenderName is the custom Appender name used in the Config Editor.

v CustomAppenderClass is the custom Appender java class implementation. All custom

Appenders must implement com.ibm.di.log.CustomAppenderInterface interface.

v CustomFormUserInterfaceClass is an optional parameter that specifies custom GUI

implementation for that Appender. The custom user interface class must implement

com.ibm.di.admin.ui.CustomAppenderUIInterface.

Here is an example for a custom Appender definition in global.properties:

custom.appender.customLog=com.ibm.di.log.CustomLogAppender com.ibm.di.admin.ui.CustomLogFormUI

For more information, see the "Logging and Debugging" chapter in the IBM Tivoli Directory

Integrator 6.1: Administrator Guide.

Log4j logs folder

The default location of the logs generated by log4j has now been changed to “logs” folder.

The change has been made in both the log4j.properties file and the ce-log4j.properties file.

Now both the ibmdi.log and the ibmditk.log are by default placed under the “logs” directory.

The log4j.appender.Default.file property in both log4j.pproperties file and ce-log4j.properties

file has been modified to change the default folder to the logs folder and then place the

corresponding files under the log folder.

Miscellaneous Problem Determination Enhancements

In order to improve the serviceability of TDI, the following enhancements have been made to

6.1:

v TDI 6.1 parsers now include trace information.

v Log, message and trace files are now stored in the following sub-folders of the common

TDI installation directory:

– Trace files are stored in CTGDI/logs

Appendix A. Enhancements and changes in 6.1 247

– FFDC data in CTGDI/FFDC/<date>

– Message logs in CTGDI/logs
v The name of the message log file will have prefix msg and suffix .log.

v Problem Determination scripts – collect.bat (sh) and logcmd.bat (sh) – are provided in the

CTGDI/scripts directory.

v The jlog.properties file is now placed under the Tivoli_Common_Dir/CTGDI/etc directory.

An example of the defaults set for the logs and traces:

jlog.snapmemory.className=com.tivoli.log.SnapMemoryHandler

jlog.snapmemory.description=Memory handler used to trace to memory

jlog.snapmemory.queueCapacity=10000

jlog.snapmemory.dumpEvents=true

jlog.snapmemory.snapFile=trace.log

jlog.snapmemory.baseDir=$Tivoli_common_dir$/CTGDI/FFDC/

jlog.snapmemory.userSnapFile=userTrace.log

jlog.snapmemory.userSnapDir=$Tivoli_common_dir$/CTGDI/FFDC/user/

jlog.snapmemory.triggerFilter=jlog.levelflt

jlog.snapmemory.msgIds=*E

jlog.snapmemory.msgIDRepeatTime=10000

jlog.snapmemory.maxFiles=10

jlog.snapmemory.maxFileSize=1000000

Connector Pooling

TDI version 6.0 introduced the concept of AssemblyLine pooling as a feature of the new

Connector Server Mode. Now in 6.1 you can also define global pools of Connectors that can

be shared between AssemblyLines in the same Config.

See “Connector Pooling” on page 184 for more information about Connector Pooling.

Enhance Connector Initialization Failure Handling

Although the Reconnect feature was introduced in version 6.0, it did not handle initial

Connector initialization failures as desired. This mechanism has been enhanced in 6.1 to

include a check box in the Connection Errors tab. The check box tells the TDI server to use

the Reconnect parameters for initial connection failure in addition to the connection loss

during AssemblyLine operation. In addition, the actual exceptions that should be handled by

Connection Loss behavior is now customizable. Be default, rules for defining which errors

that trigger this behavior are coded into Connectors themselves.

In addition, you can define additional rules to compliment or override built-in ones.

See “Connection Errors” on page 182for more information about the new Connector

initialization functionality.

248 IBM Tivoli Directory Integrator 6.1: Users Guide

Disabling AssemblyLine components via the Task Call Block (TCB)

In TDI 6.0 each of the components (Connectors, Function Components, etc.) hosted by an

AssemblyLine are created and initialized on AssemblyLine Initialization.

In TDI 6.1 it is possible to programmatically specify that certain AssemblyLine components

must not be created or initialized on AssemblyLine initialization. This is done by disabling

those components via the Task Call Block (TCB). See “Disabling AssemblyLine components”

on page 16 for more information.

AssemblyLine Operations

Traditionally, AssemblyLines have performed a single function . Although they could contain

branches for dealing with specific situations or data values, an AL was traditionally designed

to move data in one direction from a set of data sources to another set of targets. As a result,

when you used the 6.0 web services components to expose an AL as a service, multiple ALs

necessary to provide additional services.

TDI version 6.1 introduces the concept of AssemblyLine Operations, allowing you to

implement any number of distinct functions to be performed by an AL. Each Operation has

an associated set of Input and Output Maps for defining both parameter values passed in

when an Operation is called, as well as Attributes returned after the called AL Operation is

finished. This extends and replaces the single set of Call and Return Attribute Maps found for

AssemblyLines in previous versions.

Once you have defined Operations for an AssemblyLine, the new Switch-Case constructs let

you easily implement the logic in the AL to deal with them. Furthermore, both the AL

Function (FC) and the AL Connector have been enhanced to support AL Operation calls.

AssemblyLines with Operations can be published as “Adapters”, using the AL Publishing

feature. These Adapters show up as Connectors and can easily be added to other

AssemblyLines or Config Connector Libraries. If you drop the improved Web Service Receiver

Server Connector into an AssemblyLine, it can generate the WSDL for the AL based on its

Operations and the associated Attributes.

And, of course, AL Operations are accessible through API calls. As a result, the new

Command Line Interface for TDI and the Administration and Monitoring Console both offer

features for calling specific AL operations, and for passing Attribute values between the

calling AL and the called AL.

Defining AL Operations

Operations are managed in the Operations tab of an AssemblyLine. See “Operations” on page

158 for more information about defining AL operations.

Appendix A. Enhancements and changes in 6.1 249

Calling AL Operations

In addition to API calls, there are a number of Components for running and controlling

AssemblyLines. These have all been enhanced to support AL Operations, and are described in

the following sections.

AssemblyLine Function Component

This component now offers a Query parameter for retrieving Operations from the configured

AL. See the AL Function Component section in the IBM Tivoli Directory Integrator 6.1: Reference

Guide for more information.

AssemblyLine Connector

The AssemblyLine-caller Connector, called the AL Connector allows you to exploit an

AssemblyLine as a single component in another AL. Furthermore, it enables the development

of custom Connector Modes that represent the various operations implemented by the called

AL.

See the AL Connector section in the IBM Tivoli Directory Integrator 6.1: Reference Guide for more

information.

Using operations from JavaScript

Specifying the operation to call, as well as the Attribute values to pass into the called AL are

both done in the Task Call Block (TCB).

// Set up a new TCB and choose the “findUser” Operation.

//

var myTCB = system.newTCB();

myTCB.setOperation(“findUser”);

// Now I have to pass in the ”uid” Input Attribute

// defined in the example screen shown earlier in this section.

// The value I want to use is in a work Entry Attribute called “userID”.

//

myTCB.setOperationInitParam(“uid”, work.getString(“userID”));

// Now I can call the AL Operation.

//

var al = main.startAL(“WS”, myTCB);

al.join(); // Wait for it to complete

var resEntry = al.getResult(); // Return the resulting Attribute

A more efficient way of calling AL Operations is by using the AssemblyLine’s Manual Mode

feature. If you start the AL in Manual Mode, then it fires up all components and returns

without actually doing any processing:

myTCB.setRunMode(“manual”);

var al = main.startAL(“WS”, myTCB);

Now you can make calls to different AL Operations each time you cycle the AssemblyLine

manually with the executeCycle() method.

250 IBM Tivoli Directory Integrator 6.1: Users Guide

Resource Library

TDI now provides a simpler method for sharing AssemblyLines and components by

introducing the TDI Resource Library in the Config Editor. The Resource Library appears on

Resources tab just below the Config Broswer.

See “Resources” on page 134 for more information about the Resource Library.

Publishing AssemblyLines (Adapters)

The concept of “Adapters” is to allow you to publish an AL as though it were a Connector.

Although this type of functionality has been around for a while, AL Publishing makes this

powerful feature easy-to use.

Publishing a package

When you publish an AssemblyLine, TDI resolves all dependencies to inherited Library

components, as well as processing the operations defined for this AL. Publishing is done by

right-clicking on an AL in the Config Browser and then select Publish..., which brings you to

the Package Information screen.

See “Packaging, Library and Reports” on page 147 for more information.

EventHandler transition

EventHandlers are deprecated in 6.1. This means that if you create a new Config, no folder

called “EventHandlers” will be visible in the Config Browser window of the Config Editor.

However, TDI still supports pre-6.1 Configs using EventHandlers. If you open such a Config,

then the Config Browser will contain the “EventHandler” library folder, and the TDI Server

still supports their operation.

Library Feature and Copy/Paste for Attribute Maps

AttMap components, while already supporting drag-and-drop to Input or Output Maps on

Connectors and Functions, now provide the reciprocal feature: there is a new Copy to Library

button for all Input and Output Maps that allows you to copy these as AttMaps to the Config

Library.

Note: A simply mapped Attribute can be used for either Input or Output Maps. However,

JavaScript or Expression based Attribute mappings will probably contain explicit

references to Entry objects like work or conn. As such, you must make sure that they fit

the context that you want to use them in.

Copy/Paste of Attributes

You can now also right-click any Attribute in a map and copy it, allowing you to paste the

entire Attribute Map definition for this item to any other Map or Schema (like for an AL

Operation).

Appendix A. Enhancements and changes in 6.1 251

Copy/Paste for Config objects

Although Copy/Paste of Config objects (ALs, Connectors, FCs, etc.) was introduced in version

6.0, this feature has been enhanced and corrected in the latest release. You can now easily

Copy ALs and components and then paste them into another Config. You can also exchange

them via IM chats, emails and text files, since the copy-buffer is filled with the TDI Config

XML definition of the selected item. This makes passing stuff around simple and easy, and is

a great tool for support and online assistance (e.g. ICT/NotesBuddy, forums, ...). Note: Make

sure you get the entire <MetamergeConfig> node in your copy command, including the start

and end tags.

System Queue

In addition to the System Store, which was available in previous versions, TDI 6.1 offers a

System Queue. This is a built-in queue infrastructure to facilitate communications between

ALs, in much the same way that the MemQ feature (and components) do. The big difference

is that the System Queue enables data transfer across multiple TDI Servers. By default, the

System Queue uses the bundled MQe (WebSphere® MQ Everyplace®), but can be configured

to leverage other JMS-compliant queuing systems.

For more information about the System Queue and how to enable it, see the "System Queue"

chapter in the IBM Tivoli Directory Integrator 6.1: Administrator Guide.

System Queue Connector

TDI offers a SystemQueue Connector that can be used to Iterate off a queue, as well as add

Entry data to one.

See the "Connectors" chapter of the IBM Tivoli Directory Integrator 6.1: Reference Guide for more

information about the System Queue Connector.

Complex XML Handlers

TDI 6.0 featured the Castor JavaToXML and Castor XMLToJava Function Components, which

serialized Java bean objects to XML and parsed XML into Java bean objects respectively. These

two components (in fact, the entire Castor library and all related componentry) have been

removed in TDI 6.1 and replaced with greater functionality provided by the Eclipse Modelling

Framework (EMF) library.

As a result, two new FCs have been added: the SDOtoXML and XMLtoSDO Function

Components, both of which leverage Service Data Objects (SDOs) to let you work with

arbitrarily complex XML documents.

For details reagarding the SDOtoXML and XMLtoSDO Function Components, refer to the IBM

Tivoli Directory Integrator 6.1: Reference Guide.

252 IBM Tivoli Directory Integrator 6.1: Users Guide

Command Line Interface (CLI)

TDI 6.1 offers a stand-alone command line tool for accessing and controlling a local or remote

TDI Server. This tool allows you to connect to a running Server and then start and stop

Configs and ALs, reload Configs, query status, read and set properties, send events and shut

down the Server.

This program is located in the <TDI_Installation>/bin folder and is called tdisrvctl. It offers a

complete usage display if you fire it up without parameters (or with invalid ones).

See “Command Line Interface (CLI)” on page 234 for more information.

Config Reports

By right-clicking on an AssemblyLine or component in the Config Browser (or on the

“AssemblyLines” folder itself) you get a option called “Config Report”. Selecting this brings

up a File Browser dialog where you can choose which Config Report to run.

See “Config and AssemblyLine Reports” on page 149 for more information.

Property Store Framework

TDI 6.1 introduces the TDI Properties Framework, providing a common interface for

managing and using all TDI-related properties. It builds on Connector technology, allowing

you to read and write properties to a broad range of systems and data stores (not just files as

in previous versions). For more information, see “Properties” on page 194.

Accessing Properties from JavaScript

In addition to the existing UserFunctions (the “system” object) functions like

getExternalProperty() and getJavaProperty, there are new methods for working with the

Properties framework that manages all types of Properties: getTDIProperty() and

setTDIProperty(). Both functions come in two flavors, one which names on the property in

question and another which allows you to specify a specific Property Store as well.

Expressions

TDI 6.1 offers an Expressions feature that allow you to compute parameters and other settings

at run-time, making your solutions dynamically configurable. See “Expressions” on page 111

for more information.

Java Function Component

This Function Component lets you open a .jar file, browse and select a method, then

populates the schemas for Input and Output Maps with the required parameters.

See the "Function Components" chapter in the IBM Tivoli Directory Integrator 6.1: Reference

Guide for more information

Appendix A. Enhancements and changes in 6.1 253

General Enhancements to TCP-based objects

SSL support enhancements

TCP-based components now all support SSL (where applicable).

TCP headers as Attribute values

TCP-based components, like the HTTP Server Connector, now have a switch in their Config

screens for returning TCP headers as Attribute values. When this flag is unchecked, TCP

headers are stored as properties in the returned Entry object

TCP Connection Backlog parameter

Server Mode Connectors based on TCP protocols have a new parameter called Connection

Backlog that controls the queue length for incoming connections.

Secure Remote Command Line FC

The new Secure Remote Command Line FC (or RCL FC for short) enables command line

system calls to be executed on remote machines using any of the following protocols: RSH,

REXEC, SSH or Windows. The RCL FC uses the RXA toolkit to connect to remote machines,

execute the commands and return the results. The returned output can then be parsed, to be

consumed as one value at a time and detect any problems with the executed command.

DSML v2 enhancements

The DSML v2 library used is now that from ITDS, making TDI’s use of this XML format

compliant with the DSML v2 standard . This means that in addition to support the DSML

operations Search, Modify, Add, Delete, ModifyDN and Compare, both Auth and Extended

operations are now also handled. Furthermore, the DSMLv2 Parser (described in the next

section) now supports the optional “requestID″ DSMLv2 attribute and the optional “control”

DSMLv2 elements.

See the IBM Tivoli Directory Integrator 6.1: Reference Guide for more information about DSMLv2

Components.

SendEMail Function Component

This new component uses the javax.mail package to offer a simple method for connecting to

SMTP servers and sending e-mails. It can send e-mails to multiple recipients and includes an

option to attach multiple files with different MIME types as well.

See theIBM Tivoli Directory Integrator 6.1: Reference Guide for more information about this

Function Component.

254 IBM Tivoli Directory Integrator 6.1: Users Guide

Common Base Event (CBE) Function Component

The CBEGeneratorFC is used for creating CBE event objects. The FC allows you to select

between either generating a CBE Java object, which can then be passed to a Comment Event

Infrastructure (CEI) Server via the TEC web services, or as an XML document that adheres to

the Hyades CBE Logging format and that can then be used to write a CBE-style logfile.

See the "Function Components" chapter in the IBM Tivoli Directory Integrator 6.1: Reference

Guide for more information about this Function Component

JDBC Connector enhancements

The JDBC Connector has been improved in a number of different ways. In addition to offering

a configuration parameter for setting the SELECT statement (used for Iterator and Lookup

mode operation), you can also define the INSERT, UPDATE and DELETE statements to be

used.

See the "Connectors" chapter in the IBM Tivoli Directory Integrator 6.1: Reference Guide for more

information about these and other enhancements to this Connector.

JMS Connector supports other JMS providers

The JMS Connector now works with other message queues, in addition to the already

supported IBM MQ. Although support for IBM MQ is included, you can now plug in other

message queues by supplying your own JMS initiator class.

See the "Connectors" chapter in the IBM Tivoli Directory Integrator 6.1: Reference Guide for more

information about this Connector.

HTTP Server Connector enhancements

Several enhancements have been made the HTTP Server Connector.

See the "Connectors" chapter of the IBM Tivoli Directory Integrator 6.1: Reference Guide for more

information about this Connector.

AssemblyLine Connector and Function Component

Both the AL Connector and the AL FC have been enhanced to support AL Operations. See

“Operations” on page 158 for more information

FTP Connector

This Connector now supports IPV6.

Appendix A. Enhancements and changes in 6.1 255

Harmonized Change Detection handling

The Change Detection Connectors have been reworked to make them behave in the same

way, as well as provide the same parameter labels for common settings. These Connectors are:

v IBM Directory Server Changelog (TDS)

v AD Changelog v2 (Active Directory)

v Domino Change Detection

v Netscape Changelog (openLDAP, SunOne, iPlanet, etc.)

v RDBMSChangelog (DB2, Oracle, SQL Server, and so forth)

v zOS Changelog

See the "Connectors" chapter in the IBM Tivoli Directory Integrator 6.1: Reference Guide for more

information about the changes made to these Connectors.

Administration and Monitoring Console

The IBM Tivoli Directory Integrator Administration and Monitoring Console (AMC) is a

Web-based tool for administering and monitoring TDI solutions. AMC communicates to TDI

servers over the Remote Server API.

See the "Administration and Monitoring Console" chapter in the IBM Tivoli Directory Integrator

6.1: Administrator Guide for more information.

New Java version

TDI version 6.1 includes IBM Java version 1.5.

AssemblyLine Debugger

TDI 6.1 offers an AssemblyLine debugging tool called the AL Stepper. The AL Stepper allows

you to:

1. Define breakpoints for AssemblyLines.

2. Pause AssemblyLine processing at the defined breakpoints to examine the AssemblyLine

for errors.

The AL Stepper is part of the Config Editor.

For more information about how to use the AL Stepper, please refer to “Debugging” on page

165.

Password Change Plugins

MQe can now secure communications through certificates. In addition, there is now a

password change plug-in for Unix PAM.

256 IBM Tivoli Directory Integrator 6.1: Users Guide

Response section removed from AssemblyLine Flow

The Response section is removed from the AssemblyLine component list, leaving only Feeds

and Flow. Instead, the Output Map and Response Hooks are now part of the Server Mode

Connector itself on screen. The execution of response behavior is still done after Flow section

processing is finished.

Note that system.skipEntry() will continue to skip response behavior, and as such, no reply

will be made by a Server Mode Connector. If you would prefer to simply skip the remaining

Flow section components and yet send the response, use the system.exitBranch(“Flow”); call

instead.

TDI can be started as more then one Windows service

The TDI Windows service wrapper has been enhanced so that you can start TDI as multiple

service instances.

Iterators can be used in Flow section

You can now put a Connector in Iterator Mode into the Flow Section. As such, the Iterator

will work in the same way as it would in the Feeds: it is initialized (including building its

result set with the selectEntries call) during AL startup and will retrieve one Entry

(getNextEntry) on each cycle of the AL. However, an Iterator in the Flow section will not

drive the AL itself, as it would do in Feeds.

Custom Method invocation

Implementing your own functionality and access it from the Server API - both local and

remote –has been simplified. You can now drop your own JAR file in the TDI classpath and

access it from the Remote Server API without having to deal with RMI.

See the "Server API" chapter of the IBM Tivoli Directory Integrator 6.1: Reference Guide for more

information.

Appendix A. Enhancements and changes in 6.1 257

258 IBM Tivoli Directory Integrator 6.1: Users Guide

Appendix B. Using CloudScape database

The following are some of the commands used for the CloudScape database:

v start -p portnumber [-ld]

v shutdown [-h host][-p portnumber]

v dbstart databaseDirectory [-b bootPassword][-ld][-ea encryptionAlgorithm] [-ep

encryptionProvider] [-u user password][-h host][-p portnumber]

v dbshutdown databaseDirectory [-h host][-p portnumber]

v testconnection [-d databaseDirectory] [-u user password] [-h host] [-p portnumber]

v sysinfo [-h host][-p portnumber]

v conpool min max [-d databaseDirectory][-h host][-p portnumber]

v logconnections {on|off}[-h host][-p portnumber]

v maxthreads max[-h host][-p portnumber]

v timeslice milliseconds[-h host][-p portnumber]

v trace {on|off} [-s session id][-h host][-p portnumber]

v tracedirectory traceDirectory[-h host][-p portnumber]

Embedded CloudScape

The CloudScape database engine by default runs inside IBM Tivoli Directory Integrator

(embedded), as opposed to running in its own JavaVM (networked mode). When you run

CloudScape in networked mode, multiple instances of IBM Tivoli Directory Integrator can

access the same database server, because all database requests are sent to a single CloudScape

server. In embedded mode there is no way for another process to get access to the

CloudScape database engine that runs inside IBM Tivoli Directory Integrator

In networked mode you can also start multiple databases and have a single CloudScape

server serve multiple instances of IBM Tivoli Directory Integrator.

Overriding the CloudScape defaults

Modify the global.properties file, and edit the section that specifically says Location of the

database (networked mode). Comment out the preceding section that says Location of the

database (embedded mode) to override the CloudScape creation, usage and shutdown defaults.

The internal Store Factory in IBM Tivoli Directory Integrator that manages the database

connections detects that CloudScape is not running in embedded mode, and does not

shutdown any database you open from the Config Editor or the server.

© Copyright IBM Corp. 2003,2006 259

Much more detailed information about the usage of CloudScape and the System Store is

available in the System Store chapter in theIBM Tivoli Directory Integrator 6.1: Administrator

Guide.

260 IBM Tivoli Directory Integrator 6.1: Users Guide

Appendix C. Increasing the memory available to the Virtual

Machine

While processing large sets of data, especially when using memory-based components like the

XML Parser, you may run out of memory in the Java Virtual Machine even though you have

more memory available in your machine. In such a case it may help to increase the heap size

in IBM Tivoli Directory Integrator

Windows platforms

Edit ibmdisrv.bat in the IBM Tivoli Directory Integrator install directory to adjust the

existing -Xms16m option to -Xms254m -Xmx1024m in the next to last line of the file

(i.e. the line that invokes java).

Note: -Xms is the initial heap size in bytes and -Xmx is the maximum heap size in

bytes. You can set these values according to your needs.

This will have no effect if you are trying to run an AssemblyLine with a memory

problem from the Config Editor (ibmditk), as the Config Editor starts a new instance

of the JVM to run the AssemblyLine; with default parameters. In order to

accommodate this situation, you need to do the following:

1. Edit the global.properties or solution.properties file to alter the settings of

com.ibm.di.javacmd to refer to a batch file. (for example, com.ibm.di.javacmd=c:\
Program Files\IBM\TDI\V6.1\myjava.bat)

2. Create a command file (the aforementioned c:\Program Files\IBM\TDI\V6.1\
myjava.bat) containing the appropriate Java invocation command, like "javaw"

-Xms254m -Xmx1024M %*

Now the CE will use the modified JVM invocation, with increased heap size.

Unix/Linux platforms

Edit ibmdisrv in the IBM Tivoli Directory Integrator install directory to adjust the

existing -Xms16m option to -Xms254m -Xmx1024m in the last line of the file (i.e. the

line that invokes java).

Note: -Xms is the initial heap size in bytes and -Xmx is the maximum heap size in

bytes. You can set these values according to your needs.

This will have no effect if you are trying to run an AssemblyLine with a memory

problem from the Config Editor (ibmditk), as the Config Editor starts a new instance

of the JVM to run the AssemblyLine; with default parameters. In order to

accommodate this situation, you need to do the following:

1. Edit the global.properties or solution.properties file to alter the settings of

com.ibm.di.javacmd to refer to a batch file. (for example, com.ibm.di.javacmd=/
opt/IBM/TDI/V6.1/myjava.bat)

© Copyright IBM Corp. 2003,2006 261

2. Create a command file (the aforementioned /opt/IBM/TDI/V6.1/myjava.bat)

containing the appropriate Java invocation command, like "java" -Xms254m

-Xmx1024M $*

Now the CE will use the modified JVM invocation, with increased heap size.

262 IBM Tivoli Directory Integrator 6.1: Users Guide

Appendix D. Double byte character sets in IBM Tivoli

Directory Integrator

IBM Tivoli Directory Integrator is written in Java which in turn supports Unicode (double

byte) character sets. However, external components such as drivers might not support the set.

The prevalent scripting engine used in IBM Tivoli Directory Integrator IBM JSEngine (which

implements the JavaScript language) is known to support double byte character sets correctly.

Some files, when UTF-8, UTF-16 or UTF-32 encoded, may contain a Byte Order Marker (BOM)

at the beginning of the file. A BOM is the encoding of the character 0xFEFF. This may be used

as a signature for the encoding used. The TDI File Connector does not recognize a BOM.

If you try to read a file with a BOM, you should add this code to e.g. the ’Before Selection’

Hook of the connector:

 var bom = thisConnector.connector.getParser().getReader().read(); // skip the BOM = 65279

This code will read and skip the BOM, assuming that you have specified the correct character

set for the parser.

Some care must be taken with the http protocol; see IBM Tivoli Directory Integrator 6.1:

Reference Guide, section about character sets encoding in the description of the HTTP Parser

for more details.

Scripting languages supported by WSH (Windows Scripting Host), like JScript and VBScript

might cause problems when using Unicode character sets.

© Copyright IBM Corp. 2003,2006 263

264 IBM Tivoli Directory Integrator 6.1: Users Guide

Appendix E. Dictionary of terms

IBM Tivoli Directory Integrator terms

Action Manager (AM)

Action Manager is a stand-alone Java application used to configure failure-response

behavior for TDI 6.1 solutions. AM executes rules defined with AMC v.3. An AM rule

consists of one or more triggers that define a "failure" situation – such as the

termination of an AL that should not stop running, or if an AL has not been executed

within a given time period, etc. Furthermore, each rule also defines actions to be

carried out in case of this "failure". Actions include operations like sending events or

email, starting ALs (locally or remote) and changing configuration settings. Action

Manager requires TDI 6.1 and AMC v.3.

Accumulator

A special object that can be set in a Task Call Block (TCB) for use when starting

another AssemblyLine either via a scripted call, or a component like the

AssemblyLine Connector or the AssemblyLine FC. The Accumulator is either a

collection of Work Entry objects handled by the called AL, or it is a component that is

called to output each Entry. Accumulator handling is done at the end of each

AssemblyLine Cycle.

Adapter

Adapter is a word is used in many contexts and with different meanings. A TDI

Adapter refers to an AssemblyLine that is "packaged" as a single Connector. Creating a

TDI Adapter requires setting up an AssemblyLine that is written to perform (and

expose) one or more business related tasks. Each task is defined as an AssemblyLine

Operation (for example, ‘EnableAccount’, or ‘ReturnGroupMembers’). This AL can

then be published for sharing, and can be leveraged by the AssemblyLine Connector

which offers mode settings reflecting these operations12.

AL Shorthand for AssemblyLine.

Administration and Management Console (AMC)

AMC is an browser-based console for managing and monitoring TDI solutions.

Version 3, which is part of the TDI 6.1 release, runs on the WebSphere Application

Server (enterprise and express versions), as well as Tomcat. Each AMC version is

designed to work with a specific release of TDI and is incompatible with other

versions. AMC v.3 is designed for TDI 6.1, AMC v.2 works with TDI 6.0 and AMC v.1

runs with TDI 5.2.

API Application Program Interface. A way of programmatically (local or networked) call

another application, as opposed to using a command line or a shell script.

12. AL Operations are also accessible via the AssemblyLine FC.

© Copyright IBM Corp. 2003,2006 265

Appender

Appender is a log4j term (a third party Java library) for a module that directs

log-messages to a certain device or repository. In IBM Tivoli Directory Integrator you

control logging for your AssemblyLines by creating and configuring Appenders, either

under the Logging tab of a specific AL, or under Config -> Logging in the Config

Browser to control how all AssemblyLines in the Config do their logging.

AssemblyLine (AL)

The basic unit-of-work in a TDI solution. Each AL runs as a JVM thread in the Server

and is made up of a series of AssemblyLine components (one or more Connectors,

Functions, Scripts, Attribute Maps and Branches) linked together and driven by the

built-in workflow of the AssemblyLine.

AssemblyLine Component

This term denotes an TDI component used to construct AssemblyLines. The possible

Components are:

v Connectors

v Function Components

v Script Component

v Attribute Map Component

v Branches (including Loops and Switches)

The components list in an AssemblyLine is divided into two sections: Feeds where the

Work Entry for each AL cycle is created from input data by a Connector in Iterator or

Server mode, and the Flow section that holds the Connectors (in any mode except

Server), Functions, Attribute Maps and Scripts providing the additional data access

and processing.

AssemblyLine Operation

A business task that is implemented by an AssemblyLine and published via its

Operations tab. Each Operation can have its own Input and Output Attributes Maps

for defining the parameters expected when this Operation is invoked (Input Map), as

well as those returned (Output Map). This is also called the Schema of the Operation.

AssemblyLine Phases

An AssemblyLine goes through three phases:

Initialization

At this point the TDI Server uses the "blueprint" for the AssemblyLine in the

Config to create the various components as well as set up the AL

environment, including processing the TCB, starting the AL's script engine

and invoking the AssemblyLine's Prolog Hooks. All components that are

configured for Initialization At Startup are initialized at this point causing

their Prolog Hooks to get run as well.

Cycling

Now the AL workflow drives each of its components in turn, starting each

cycle by invoking the On Start of Cycle Hook. Then the currently active Feeds

266 IBM Tivoli Directory Integrator 6.1: Users Guide

Connector reads in data, creates the Work Entry and passes it to the Flow

section. The Work Entry is passed from component to component until the

end of Flow is reached, at which time control is returned to the start of the

AssemblyLine again13. Cycling continues until an unhandled error occurs or

there is no more data available (for example, the Iterator reaches End-of-Data).

Shutdown

When cycling stops then the AssemblyLine goes into Shutdown phase: Epilog

Hooks are called and all initialized components are closed down (which

flushes output buffers and executes their Epilog Hooks as well). Finally the

AssemblyLine closes down its environment and its thread terminates.

AssemblyLine Pool

Actually a collection of AL Flow sections that can be configured to allow a Server

mode Connector to service more clients. Available for ALs that use Server mode

Connectors and set up in the AssemblyLine's Config tab.

Attribute

Part of the TDI Entry data model. Attributes are carried by Entry objects (Java

"buckets", like the Work Entry) and they can hold zero or more values. These values are

the actual data values read from, or written to connected systems, and are represented

in TDI as Java objects.

Attribute Map (AttMap)

An Attribute Map is a list of rules (individual Attribute mapping instructions) for

creating or modifying Attributes in an Entry object typically based on the values of

Attributes found in another Entry object. Components like Functions and Connectors

have an Input Map for taking data read into local cache (the conn Entry) and use this

to define Attributes in the Work Entry. These components also have an Output Map

that takes Attributes carried by the AssemblyLine (in its Work Entry) and use this to

set up the conn Entry that will be used by the component's output operation.

Attribute Map components use the Work Entry as both the source and target of the

mappings.

 Attributes can be mapped in one of three ways: Simply (copying values between

Attributes), Advanced (using a snippet of JavaScript) or with a TDI Expression.I

Attribute Map component

A free-standing list of individual Attribute mappings that take values from the Work

Entry and use them to create and update other Attributes in the Work Entry. They can

be tied to Connector and Functions to define their Input or Output Maps. Note that

Input and Output Maps can be copied to the library as AttMap components for reuse.

Best Practices

Recommended methodology and techniques for working with TDI. These include the

ABCs: Automation, Brevity and Clarity:

13. If the current cycle was fed by a Server mode Connector, then the reply is created by the Server mode Connector's

Output Map and sent to the client.

Appendix E. Dictionary of terms 267

Automation

Use the automated features of TDI in preference to your own custom scripted

logic whenever possible – for example, using Branches/Loops instead of

extensive scripting in Hooks. Not only will this make your solution easier to

read and maintain (and step through with the AL Debugger!), but your

solution will benefit directly as built-in logic is strengthened and extended

with each new release.

Brevity

Keep your AssemblyLines as short and simple as possible, as well as your

script snippets. Break complex logic into simpler patterns that can be tested

individually and reused in other solution.

Clarity

Choose legibility over elegance. Write solutions for others to read and

maintain.

Branches

A construct used to control the flow of logic in an AssemblyLine. TDI 6.1 provides

three types of Branches:

v Simple Branches (IF, ELSE-IF and ELSE)

v Loops (Connector-based, Attribute-based or Conditional)

v Switches (for example, switching on the Work Entry delta operation code, or the

Operation an AL is called with).

CBE Common Base Event. A term used in the Common Base Infrastructure. See "Common

Base Event" in the chapter about the CBE Generator Function Component in the IBM

Tivoli Directory Integrator 6.1: Reference Guide.

CEI The IBM Common Event Infrastructure. See "The Common Event Infrastructure", in

IBM Tivoli Directory Integrator 6.1: Reference Guide.

Change Detection Connector (CDC)

A Connector that returns changes made in the connected system. Typically, a CDC can

be configured to return only a subset of Entries: new, modified, deleted, unchanged or

a combination of these. Some CDC's provide only the changed Attributes in the case

of a modified Entry, while other return them all. Change Detection Connectors also

tag the data with special delta operation codes to indicate what has changed, and how.14.

CloudScape (Derby)

A free, Java-based Relational Database, akin to IBM DB2, that is bundled with TDI as

the default repository for the System Store.

CLI Command Line Interface, such as the (such as the tdisrvctl utility)

14. For LDAP there is also a special kind of modify operation where the directory entry has beeen moved in the tree:

modrdn, i.e. a "renamed" entry.

268 IBM Tivoli Directory Integrator 6.1: Users Guide

Components

The architecture of IBM Tivoli Directory Integrator is divided into two parts: generic

functionality and technology-specific features. Generic functionality is provided by the

TDI kernel which provides automated behaviors to simplify building integration

solutions. The kernel also lets you extend or override these behaviors as desired, as

well as doing the housekeeping for your solution: logging/tracing, hooks for error

handling, API and CLI access, etc. Technology-specific "intelligence" is handled by

helper objects called components, such as Connectors, Functions, Branches, Scripts and

Attribute Map components. Components provide a consistent and predictable way to

access heterogeneous systems and platforms, and the kernel lets you "click" together

components to build AssemblyLines.

Compute Changes

A special feature of the Connector Update mode that instructs the Connector to

compare the Attributes about to be written to the connected system with those that

exist in this data source already – in other words, it compare the value of each

Attribute in the conn Entry (the result of the Output Map) with the corresponding

ones found during the Update mode lookup operation (which is stored in the current

Entry).

Config or Config File

A collection of AssemblyLines and components that comprise a solution. A Config is

stored in XML format, typically in a Config file and is written, tested and maintained

using the Config Editor.

Config Browser

This is the tree-view window at the top left-hand part of the Config Editor screen. It

gives you access to Config-wide settings, the AssemblyLines and components that

make up the Config, as well as Properties, included Configs and custom Java libraries

that are to be loaded and made available to your scripts.

Config Editor (CE)

The graphical development environment used to write, test and maintain Configs.

Configs are stored in XML format and are deployed by assigning them to one or more

IBM Tivoli Directory Integrator Servers to execute.

Config Instance

A copy of a TDI Config that is running on a Server. Typically loaded only once on a

given Server, TDI allows you to start the same Config multiple times if desired. Each

running copy is given its own context and can be accessed individually through the

API.

Config View

This term is used in the context of AMC to describe how a particular Config appears

in the management screens of AMC. A Config View is a selection of the

AssemblyLines and properties that are to be visible onscreen (user/roll based),

providing solution-oriented Config administration and management. Config Views

can be combined to define a Monitoring View in AMC.

Appendix E. Dictionary of terms 269

conn Entry

This is the local Entry object maintained by a Connector or Function. The conn Entry

is used as a local cache for read and write operations, and data is moved between this

cache and the AssemblyLine's Work Entry via Attribute Maps (specifically, Input and

Output Maps).

Connector

One of the component types available in TDI to build AssemblyLines. Connectors are

used to abstract away the technical details of a specific data store, API, protocol or

transport, providing a common methodology for accessing diverse technologies and

platforms.

 Unlike the other components, Connectors can perform different tasks based on their

mode setting (for example, Iterate, Delete, Server and Lookup). Modes are provided by

the AssemblyLine component part of the Connector, however the list of modes

supported is dependent on the Connector Interface.

Connector Interface

When a component is used in an AssemblyLine, a distinction must be made between

the Connector Interface (CI), containing the "intelligence" for working with a connected

system (e.g. LDAP, JDBC, Notes, etc.), and the AssemblyLine Connector.

15. This latter

object is the "AL wrapper" that allows the CI to be plugged into an AssemblyLine and

provides them with a consistent set of generic features, like Input/Output maps, Link

Criteria, Hooks and the Delta Engine. See ″Objects″ in IBM Tivoli Directory Integrator

6.1: Reference Guide for more information. See also ″Connectors″ in IBM Tivoli Directory

Integrator 6.1: Reference Guide.

Connector Pool

Unlike the AssemblyLine Pool feature available to ALs using Server mode Connectors,

a Connector Pool is a global collection of pre-initialized Connectors that can be used

in multiple ALs. Note that the Connector Initialization setting "Initialize and terminate

every time it is used" means that no AssemblyLine gains exclusive rights to a pooled

Connector, giving you detailed control over resources used by your solution.

current Entry

This Entry object is local to a Connector Interface (just like the conn Entry) and

contains the Attributes read in from a lookup operation (for example, as carried out by

Lookup, Update and Delete modes). It is used to provide the Compute Changes

feature.

Delta Engine

Available for Connectors in Iterator mode, the Delta Engine provides functionality for

detecting changes in data sources that do not offer any changelog or change

notification features. See Delta Operation Codes, as well as ″Deltas and compute

changes″ in IBM Tivoli Directory Integrator 6.1: Users Guide for more information.

15. Functions are similar to Connectors in that they are divided into two parts: the Function Interface and the

AssemblyLine Function. Unlike Connectors, Functions have no mode setting.

270 IBM Tivoli Directory Integrator 6.1: Users Guide

Delta mode (for Connectors)

This Connector mode is used to the apply changes specified with delta operation

codes in the Work Entry, and to do so as efficiently as possible by performing

incremental modifications. Note that Delta mode is only available for the LDAP and

JDBC Connectors, and will not work with Entries without a valid delta operation

code. See ″Deltas and compute changes″ in IBM Tivoli Directory Integrator 6.1: Users

Guide.

Delta Operation Codes

These are special values assigned to Entries, Attributes and their values to reflect

change information detected in some data source. An Entry that has delta codes

assigned is called a Delta Entry, and these are only returned by a limited set of

components: Change Detection Connectors, the Delta Engine and the DSML and LDIF

Parsers16. Delta Operation Codes can be queried and used in Branch Conditions or

your own JavaScript code, and are used by Delta mode to apply all types of changes

to target systems as efficiently as possible.

 See also ″Deltas and compute changes″ in IBM Tivoli Directory Integrator 6.1: Users

Guide.

Derby CloudScape v10, also known as Apache Derby is a small footprint relational database

implemented entirely in Java. Cloudscape is shipped as the default system store for

TDI.

Distinguished Name (DN)

An LDAP term that refers to the fully qualified name of an object in the directory,

representing the path from the root to this node in the directory information tree

(DIT). It is usually written in a format known as the User Friendly Name (UFN). The

dn is a sequence of relative distinguished names (RDNs) separated by a single comma (,

).

Entry An Entry is a TDI object used to carry data, and forms the core of the TDI Entry

model. The Entry object can be thought of as a "Java bucket" that can hold any

number of Attributes, which in turn carry the actual data values read from, or written

to connected systems. Each Entry corresponds to a single row in a database

table/view, a record from a file or an entry in a directory (or similar unit of data), and

there are a number of named Entry objects available in the system. The Work Entry

and conn Entry are the most commonly used ones, but there is also a current Entry

available in some Connector modes, an error Entry that contains the details of the last

exception that occurred, and an Operation Entry (Op-Entry) for accessing details of an

AL operation.

Epilog A set of Hooks that, if enabled, are run during the AssemblyLine Shutdown phase.

Note that the shutdown of components occurs between the two AL Epilog Hooks,

which means that the Epilog Hooks of these components are all completed before the

AssemblyLine Epilog - After Close Hook is called.

16. Note that these Parsers only return Delta Entries if the DSML or LDIF entries read contain change information.

Appendix E. Dictionary of terms 271

Error Entry

An Entry object that is created by an AssemblyLine during initialization, and contains

Attributes like "status", "connectorname" (applies for all types of components) and

"exception"17. See also Error Handling.

Error Handling

Error Handling in TDI is based on the concept of exceptions. Exceptions are a feature

of a programming language, like Java, C and C++, that let's you build error handling

like a wall around your program. It also lets you fortify smaller parts within any wall,

so you can add specific handling where necessary. TDI leverages the power of

exception handling so that you can design the error handling in your solution the

same way.

 First you have the AssemblyLine's On Failure Hook which is called if the AL stops

due to an unhandled exception18. This is the outer line of defence19. The next level is a

component, given that it provides Error Hooks. Connectors actually provide two

levels of handling: the mode-specific Error Hook, as well as the Default On Error

(same goes for Success Hooks as well).

 Finally, in your JavaScript code you can do exception handling yourself use the

try-catch statement, for example:

try {

 myObj = someFunctionCallThatCanThrowAnException();

} catch (excptThrown) {

 task.logmsg("**ERROR - The call failed: " + excptThrown);

}

ERP Enterprise Resource Planning, usually meant to mean a software suit of programs that

aims to manage enterprise resources, usually after heavy customization by the

software vendor.

EventHandler

EventHandlers are components that reside outside of AssemblyLines, but that were

used in older versions of TDI to "listen" for a specific event, and then dispatch this

event data to one or more ALs. Each event (like a received DSML message, or a new

changelog entry) resulted in a new AssemblyLine being launched, including the

setting up and breaking down of all connections—which was quite resource-intensive.

The functionality provided by EventHandlers is now handled using Connectors in

Iterator or Server mode.

17. The "exception" Attribute holds the actual Java exception object, in the case of an error – in which case the "status"

Attribute would also be changed from a value of "ok" to "error" and "message" would contain the error text.

18. An "unhandled" error is one that has been caught in an enabled Error Hook (no actual script code is necessary). If

you wish to escalate an error to the next level of error handling logic, you need to re-throw the exception:

throw error.getObject("exception");

19. If you want to share this logic (or that in any Hook) between AssemblyLines, implement it as a function stored

inScript and then including them as a Global Prolog for the AL.

272 IBM Tivoli Directory Integrator 6.1: Users Guide

Note: EventHandlers are deprecated as of the TDI 6.1 release, although they are still

supported for pre-6.1 Configs. Please use Connectors in Server and Iterator

Modes instead.

Exception

See Error Handling.

External Properties

A type of Property Store that uses a flat file for storing configuration settings (like

passwords and other component parameter settings) outside the Config itself.

Feeds This is the first section of an AssemblyLine and can only hold Iterator and Server

mode Connectors. The Feeds section is where the Work Entry is created from data

retrieved from a connected system or client. The Feeds section is like a built-in Loop

that drives the Flow section components list, once for each Entry read.

Flow This is the second (and usually the main) section of an AssemblyLine and holds a list

of components; any type, except Connectors in Server mode. The Flow section

receives a Work Entry from the currently active Feeds Connector and passes it from

component to component for processing.

Function component (FC)

One of the component types available in TDI to build AssemblyLines. Functions are

used to abstract away the technical details of a specific service or method call. Typical

examples are the AssemblyLine FC used to execute ALs and the Java Class FC that

lets you browse jar files and call class methods. Unlike Connectors, FCs do not have

mode settings.

Global Prolog

This is a Script component that is defined in the "Scripts" library folder of the Config

Browser, and which is configured to be executed when an AssemblyLine starts up.

The simplest way to do this is to select which Scripts to use with the "Include

Addition Prologs - Select" button. Note that Global Prologs are executed before the

AssemblyLine's own Prolog Hooks.

GUI (ibmditk or ibmditk.bat)

The term "TDI GUI" is sometimes used to refer to the Config Editor.

Hook This is a waypoint in the built-in workflow of the AssemblyLine, or of a Connector or

Function, where you can customize behavior by writing JavaScript. In a Connector,

the Hooks available are also dependent on the mode setting.

HTML

HyperText Markup Language. a more or less standardized way of describing and

formatting a page of text on the WordWide Web. Different manufacturer's

interpretations of the standard are often the cause of Web Browser's different

renderings of a given page.

HTTP HyperText Transfer Protocol. The protocol in use for the WorldWide Web, another

protocol on top of TCP.

Appendix E. Dictionary of terms 273

IEHS IBM Eclipse Help System. Used to host the TDI documentation locally. The

documentation hosted by IBM in the Documentation Library also uses IEHS.

Initial Work Entry (IWE)

This is an Entry that is passed into an AssemblyLine by the process that called it (for

example, an AssemblyLine Connector or Function, or by using script calls like

main.startAL(). Note that the presence of an IWE will cause any Iterators in the Flow

section to skip on this cycle.

Iterator

A Connector mode20 that first creates a data result set (for example, by issuing a SQL

SELECT statement, a LDAP search operation, opening a file for input, etc.) and then

returns one Entry at a time to the AL for processing. Iterators can reside in the

AssemblyLine Feeds section where they drive data to Flow components. If they are

placed in the Flow section then they still retrieve the next Entry from their result set

for each AL cycle, but they do not drive AL cycling in this case.

IU Installation Unit. A term specific to Solution Install (SI). Each major component of the

product is broken into separate IUs - for ease of maintenance, installation and

updates.

Java VM or JVM

Java Virtual Machine. IBM Tivoli Directory Integrator runs inside what is known as a

Java Virtual Machine. It has its own memory management and is in most respects a

Machine within the Machine.

Javadocs

A set of low-level API documentation, embedded in the product’s source code and

extracted by means of a special process during the product’s build. In IBM Tivoli

Directory Integrator the Javadocs can be viewed by selecting Help>Low Level API

from the Config Editor.

JavaScript

The language you can use to fine tune the behavior of your AssemblyLines. TDI 6.1

uses the IBM JSEngine.

JMS Java Messaging Service. A standard protocol used to perform guaranteed delivery of

messages between two systems.

JNDI Java Naming and Directory Interface. See "JNDI Connector", in the IBM Tivoli

Directory Integrator 6.1: Reference Guide.

Link Criteria

Link Criteria represent the matching rules defined for a Connector in Update, Lookup

or Delete, and they must result in a single entry match in the connected system;

20. Connectors running in Iterator mode are often referred to as "Iterators".

274 IBM Tivoli Directory Integrator 6.1: Users Guide

otherwise either an Not Found or Multiple Found exception occurs21 is an efficient

way of dealing with lookup operations where no match (or multiple matches) are

expected.

LDAP Lightweight Directory Access Protocol. An easier way of accessing (using TCP) a

name services directory than the older Directory Access Protocol. Used in for example

querying the IBM Directory Server.

Memory Queue (MemQ)

The MemQ is a TDI object that lets you pass any type of Java object (like Entries)

between AssemblyLines running on the same Server. This feature is usually accessed

through the MemQueue Connector (or the deprecated Memory Queue FC). See also

System Queue for more on how to pass data between running ALs.

Message Prefix

All error messages and Info messages in IBM Tivoli Directory Integrator are prefixed

with a unique Message Prefix. The prefix assigned to TDI is CTGDI.

Mode Connectors have a mode setting that determines how this component will participate

in AssemblyLine processing. In addition to the custom modes (implemented through

Adapters) there is a set of standard modes:

v Iterator

v AddOnly

v Lookup

v Update

v Delete

v CallReply

v Server

v Delta

Dependent on the features provided by the underlying system or functionality built

into the Connector, the list of modes supported by the different Connectors will vary.

See ″Connectors″ in IBM Tivoli Directory Integrator 6.1: Reference Guide for more

information about Connector modes.

Null Value Behavior

This term refers to how TDI will deal with Attribute mappings that result in "null"

values. Null Behavior configuration can be done for a Server by setting

Global/Solution properties. These Server-level settings can be overridden for an

Attribute Map by pressing the Null button in the button bar at the top of the map; or

for a specific Attribute via the Null button in the Details Window for its mapping.

 TDI lets you both configure what constitutes a "null" value situation (for example,

missing values, empty string or a specific value) as well as how to handle this.

21. Note that a Lookup Connector tied to a Loop

Appendix E. Dictionary of terms 275

Op-Entry (Operation Entry)

An entry which contains information about the Operation for the currently executing

AL. An Op-Entry persists its value over successive cycles for the same AL run and is

available for scripting via the task.getOpEntry() method.

Parameter Substitution

A way of specifying patterns based on Java MessageFormat class - for

simpler/quicker editing. Available in various places in TDI'.

Parser TDI components used to interpret or generate the structure for a byte stream. Parsers

are used by attaching them to a Connector that reads/writes byte streams, or to a

Function component like the Parser FC which is used to parse data in the Work Entry.

Persistent Object Store

See System Store.

Persistent Parameter Store

See Property Store.

Prolog A set of Hooks that, if enabled, are run during the AssemblyLine Initialization phase.

You can also define Global Prologs: Scripts that are run before either of the AL Prolog

Hooks. Note that the "At Startup" initialization of components occurs between the two

AL Prolog Hooks, which means that the Prolog Hooks of these components are all

completed before the AssemblyLine Prolog - After Initialization Hook is called. See

also Epilog.

Properties

This term refers to values maintained in a Property Store and used to configure

AssemblyLine and Component settings at run-time22.

Property Store

This a feature for reading and writing all types of properties. This includes:

v Java-Properties, which are settings of the JVM

v Global-Properties, TDI Server settings that are kept in a file called

global.properties the "etc" folder of your installation directory.

v Solution-Properties, which typically override Global-Properties and are found in a

file in your solution directory called solution.properties.

v System-Properties, for keeping custom property settings (uses the System Store).

In addition, you can define your own Property Stores using a Connector. The Property

Store feature also lets you designate one of your Property-Stores as a Password Store,

giving you automatic protection of sensitive configuration details.

22. Note that an Entry object can also hold properties (in addition to Attributes and delta operation codes) and these

can be accessed via the getProperty() and setProperty() methods of the Entry class.

276 IBM Tivoli Directory Integrator 6.1: Users Guide

Raw Connector

Deprecated term; this is now called the Connector Interface and refers to the part of

an AL Connector that contains the logic needed to access a specific API, protocol or

transport.

Relative Distinguished Name (RDN™)

In LDAP terms the name of an object that is unique relative to its siblings. RDNs have

the form attribute name=attribute value.

cn=John Doe

Resource Library

A simple method for sharing AssemblyLines and components between Configs. In the

Config Editor, the “Resources” navigator appears just below the Config Browser.

RMI Remote Method Invocation; a way of making procedure or method calls on a remote

system using a network communication channel. In TDI, used by the Remote API

functionality.

Sandbox

The feature of the IBM Tivoli Directory Integrator that enables you to record

AssemblyLine operations for later playback without any of the data sources being

present. See ″Sandbox″ in IBM Tivoli Directory Integrator 6.1: Users Guide.

SAP Used to stand for "Systeme, Anwendungen, Produkte" (Systems, Applications,

Products) but today, the abbreviation just stands for itself. A large, German provider

of an integrated suite of ERP applications. Mostly known for its R/3 distributed ERP

software suite, but also known for its mainframe-based R/2 software.

Script component (SC)

A Script is a block of JavaScript that is stored as a single component in TDI. In

addition to appearing in the Scripts library folder of the Config Browser23, Scripts can

be dropped anywhere in the Flow section of an AssemblyLine.

Script Engine

The component that interprets the Java scripts written inside a TDI Config. The IBM

jsEngine is used by TDI 6.1, which replaces Rhino from the previous releases.

Schema

The word ’Schema’, unfortunately, can mean different although related things,

depending on context. In a relational database context, a schema is the collection of

tables and objects a user has defined and owns (including content); and each table in

a schema is described by a Data Definition. In an LDAP context, the Schema is the

actual layout of the LDAP database, with its attributes and objects.

 In addition, Connectors and Functions can have Input and Output schemas that

represent the data model discovered in a connected system. Furthermore, an

AssemblyLine Operation can have an Input and Output schema as well.

23. In order to be used as Global Prologs (which are executed at the very start of Assemblyline Initialization) the

Script must be in the Scripts library folder and selected for inclusion in the Config tab of an AssemblyLine.

Appendix E. Dictionary of terms 277

In a product like TDI, which with equal ease can access both relational databases as

well as LDAP databases, the word Schema can therefore mean different things,

depending on where it is used.

Script Connector

A Script Connector is a Connector where you write the Interface functionality yourself:

It is empty in the sense that, in contrast to an already-existing Connector, the Script

Connector does not have the base methods getNextEntry(), findEntry() and so forth

implemented. Not to be confused with the Script Component.

Server (ibmdisrv or ibmdisrv.bat)

This is the part of the TDI product that is used to deploy and execute Configs.

Server (mode)

This is a Connector mode used for providing a request/response service (like an

HTTP server). This mode also provides an AssemblyLine Pool feature to enable

support for more connections/traffic.

Solution Directory

The directory in which you store your Config files, CloudScape databases, properties

files, keystores and so forth. The solution directory is selected when you install TDI,

and the filepaths used in your solution can be relative to this folder. The solution

directory can be explicitly specified when you start the Config Editor or Server using

the -s commandline option. Note that the counterpart of global.properties is kept in

this folder and called solution.properties—unless, of course, your solution directory

is the same as your installation directory.

SI Solution Installer. A common IBM utility for installation of many IBM products. The

TDI installer is one such product.

SSL Secure Socket Layer; a protocol used in Internet communications to encrypt data such

that if someone where to eavesdrop on the packets going back and forth he would not

be able to see what the packets contain. The protocol was invented by Netscape; and

you can see if a Web page uses the SSL protocol to talk to the Web server if it has the

'https//' prefix instead of 'http'. SSL is by no means limited to Web pages; in fact, TDI

uses it (if configured that way) to talk between differentTDI Servers and

AssemblyLines if network access is called for.

State Defines the level of participation for an AssemblyLine component. It can be in either

Enabled State, which means it will participate in AL processing, or Disabled in which

case the component is not used in any way.

 Connectors and Functions can be set to a third State: Passive. Passive State causes the

component to be initialized and closed during the Assemblyline Initialization and

Shutdown phases, but never used during AL cycling. However, you can drive these

component manually through script calls.

System Queue

A built-in queue infrastructure to facilitate the guaranteed delivery of messages

between AssemblyLines, even running on different TDI Servers. By default, the

278 IBM Tivoli Directory Integrator 6.1: Users Guide

System Queue uses the bundled MQe (WebSphere MQ Everyplace), but can be

configured to leverage other JMS-compliant messaging systems. TDI provides a

SystemQueue Connector to help you leverage this feature.

System Store

Called the Persistent Object Store, or POS in older TDI versions, the System Store is a

relational database used to store state information, like Delta Tables (used by the Delta

Engine) or Iterator state for Change Detection Connectors. It also provides the User

Property Store which is accessible through the system.setPersistentObject(),

system.getPersistentObject() and system.deletePersistentObject() methods. In

the current implementation, the IBM DB2 for Java product (also known as

CloudScape) is used. See http://www-3.ibm.com/software/data/cloudscape for more

details.

Task By convention, all threads (AssemblyLines, EventHandlers and so forth) are referred

to as tasks and are accessible from script code via the pre-registered task variable.

Task Call Block

A Java structure used to pass parameters to and from AssemblyLines. Often referred

to by its abbreviation: TCB.

TCP Transmission Control Protocol, a level 4 (transmission integrity) protocol usually seen

in combination with its layer 3 (routing) Internet Protocol as in TCP/IP. A stack of

protocols designed to achieve a standardized way of communicating across a network,

be it local (as in on the premises) or over long distances. Originally invented and

specified by DARPA, the (US) Defense Advanced Research Projects Agency. Successor

to ARPANET, which was a network of a (small) number of universities and the US

Department of Desfense, the civil side of which was managed by the Stanford

Research Institute (SRI). TCP is related to UDP.

TDI Unofficial monicker for this product, IBM Tivoli Directory Integrator.

TMS XML

Tivoli Message Standard XML. A Tivoli standardized way of formatting messages.

Each message is prefixed by a unique TMS code, which can be looked up in the

Message Guide for explanation and user response. If the code ends in ″E″ - it

indicates an Error, ″W″ indicates a warning and ″I″ indicates an Information message.

All Tivoli messages issued by TDI start with this product's unique identifier, which is

"CTGDI".

Tombstone

A record or trace showing that an AssemblyLine has terminated. Configured through

the Tombstone Manager in the CE. The trace includes a timestamp and the AL exit

status.

TWiki TWiki as a piece of software is a flexible and easy to use enterprise collaboration

system. Its structure is similar to the WikiPedia, except that is not linked into that. it

is rather meant as an independent community resource for a group of people with

common interest. There is one for IBM Tivoli Directory Integrator as well, at

http://www.tdi-users.org.

Appendix E. Dictionary of terms 279

http://www-3.ibm.com/software/data/cloudscape
http://www.tdi-users.org

Note: The TWiki site is a volunteer effort, and is not an official Tivoli support forum.

If you need immediate assistance please contact your local Tivoli support

organization.

Update

One of the standard Connector modes. Update mode causes the Connector to first

perform a lookup for the entry you want to update24, and if found it modifies this

entry. If no match is found then a new entry is added instead. See also Computed

Changes.

UDP User Datagram Protocol. A protocol use on top of the Internet Protocol (IP) which,

unlike TCP does not guarantee that the packet of data sent with it reaches the other

end. Also see TCP.

URL Unified Resource Locator. A way of defining where a resource is, be it an fileserver or

a HTML page on the WordlWide Web.

User Property Store

See Property Stores in the IBM Tivoli Directory Integrator 6.1: Users Guide.

Value (data values and types)

See Entries, and Attribute.

WikiPedia

A web-based world-wide encyclopedia, where (registered) users can add articles or

pictures, edit them, browse them, search for applicable content, etc. For TDI there is

one that similar in functionality but not linked into the WikiPedia, a "TWiki" at

http://www.tdi-users.org. The TWiki is a groupware product.

Work Entry

An Entry object that is used by the AssemblyLine to carry data from component to

component25. This object can be accessed in script code via the pre-defined variable

work. The Work Entry is typically built by a Server or Iterator mode Connector in the

Feeds section before being passed to the AL Flow section. You can also have an Initial

Work Entry (IWE) passed in if the AL was called from another process; or you can

create it in the Prolog by using task.setWork():

init_work = system.newEntry(); // Create a new Entry object

init_work.setAttribute("uid", "cchateauvieux"); // populate it

task.setWork(init_work); // make it known as "work" to the Connectors

Note that an Iterator in the Feeds section will not return any data if the Work Entry is

already defined at this point in the AL. So if an IWE is passed into an AssemblyLine,

any Iterators in the Feeds section will simply pass control to the next component in

24. Data is read into both the conn and current Entry objects. After the Output Map, the contents of conn are now the

Attributes to be written. The original entry data is still available in current.

25. Note that the "Work Entry" window shown in the Config Editor is actually a list of all Attributes that appear in

Input Maps or in the Loop Attribute field of Loops in the AssemblyLine.

280 IBM Tivoli Directory Integrator 6.1: Users Guide

http://www.tdi-users.org
http://www.tdi-users.org

line. It is also the reason why multiple Iterators in the Feeds section run sequentially,

one starting up when the previous one reaches End-of-Data.

XML TheXtensible Markup Language. A general purpose markup language (See also

HTML) for creating special-purpose markup languages, and also capable of describing

many types of data.IBM Tivoli Directory Integrator uses XML to store Config files.

Appendix E. Dictionary of terms 281

282 IBM Tivoli Directory Integrator 6.1: Users Guide

Appendix F. Notices

This information was developed for products and services offered in the U.S.A. IBM might

not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently

available in your area. Any reference to an IBM product, program, or service is not intended

to state or imply that only that IBM product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any IBM

intellectual property right may be used instead. However, it is the user’s responsibility to

evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in this

document. The furnishing of this document does not give you any license to these patents.

You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual

Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country

where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS

MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not

allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are

periodically made to the information herein; these changes will be incorporated in new

editions of the information. IBM may make improvements and/or changes in the product(s)

and/or the program(s) described in this information at any time without notice.

© Copyright IBM Corp. 2003,2006 283

Any references in this information to non-IBM Web sites are provided for convenience only

and do not in any manner serve as an endorsement of those Web sites. The materials at those

Web sites are not part of the materials for this IBM product and use of those Web sites is at

your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling:

(i) the exchange of information between independently created programs and other programs

(including this one) and (ii) the mutual use of the information which has been exchanged,

should contact:

IBM Corporation

Department MU5A46

11301 Burnet Road

Austin, TX 78758

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in

some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are

provided by IBM under terms of the IBM Customer Agreement, IBM International Program

License Agreement, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment.

Therefore, the results obtained in other operating environments may vary significantly. Some

measurements may have been made on development-level systems and there is no guarantee

that these measurements will be the same on generally available systems. Furthermore, some

measurement may have been estimated through extrapolation. Actual results may vary. Users

of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products,

their published announcements or other publicly available sources. IBM has not tested those

products and cannot confirm the accuracy of performance, compatibility or any other claims

related to non-IBM products. Questions on the capabilities of non-IBM products should be

addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To

illustrate them as completely as possible, the examples include the names of individuals,

companies, brands, and products. All of these names are fictitious and any similarity to the

names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

284 IBM Tivoli Directory Integrator 6.1: Users Guide

This information contains sample application programs in source language, which illustrate

programming techniques on various operating platforms. You may copy, modify, and

distribute these sample programs in any form without payment to IBM, for the purposes of

developing, using, marketing or distributing application programs conforming to the

application programming interface for the operating platform for which the sample programs

are written. These examples have not been thoroughly tested under all conditions. IBM,

therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

You may copy, modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application programs

conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a

copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample

Programs. © Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not

appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the

United States, or other countries, or both:

 IBM Tivoli AIX® Lotus

Notes pSeries® DB2 WebSphere

OS/390® Domino iNotes™ CloudScape

Java, JavaScript and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States and other countries.

Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.

Intel® is a trademark of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the U.S., other countries, or both.

This product includes software developed by the Apache Software Foundation

(http://www.apache.org/).

Other company, product, and service names may be trademarks or service marks of others.

Appendix F. Notices 285

286 IBM Tivoli Directory Integrator 6.1: Users Guide

����

Printed in USA

SC32-2568-00

	Preface
	Who should read this book
	Publications
	IBM Tivoli Directory Integrator library
	Related publications
	Accessing publications online

	Accessibility
	Contacting IBM Software support

	Contents
	Chapter 1. Introduction
	General concepts
	Program components and interface
	The Config Editor
	The Server

	IBM API
	Script objects

	Chapter 2. IBM Tivoli Directory Integrator concepts
	The Entry object (TDI data model)
	The AssemblyLine
	AssemblyLine flow and Hooks
	Exiting a Branch (or Loop or the AL Flow)

	Starting an AssemblyLine in the Config Editor – ibmditk
	Starting an AssemblyLine from another AL or script
	Accessing AL components inside the AssemblyLine
	AssemblyLine parameter passing
	Task Call Block (TCB)
	Providing an Initial Work Entry (IWE)

	Sandbox
	Recording AssemblyLine input
	Sandbox Playback of AssemblyLine Recordings

	Connectors
	Connector Schema
	How do Connectors share data (the work Entry)?
	Connector modes
	Iterator mode
	Lookup mode
	AddOnly mode
	Update mode
	Delete mode
	CallReply mode
	Server mode
	Delta mode

	Component states
	Enabled state
	Passive state
	Disabled state

	Adapters
	Features that enable implementation of a TDI Adapter
	The use of operations in a TDI Adapter

	Parsers
	Character Encoding conversion
	Availability

	Function Components (FC)
	The Function Interface

	Link Criteria
	Simple Link Criteria
	Advanced Link Criteria
	Link Criteria errors

	EventHandlers
	Scripting
	Controlling the flow of an AssemblyLine
	When scripting is needed
	Integrating scripting into your solution
	How scripting affects execution
	Using variables

	Control points for scripting
	Scripting in an AssemblyLine
	Script Component
	Scripting in a Connector
	Setting internal parameters by scripting
	Scripting in a Parser

	Scripting in TDI
	Script Editor
	TDI Internal Data Model (Entries, Attributes and Values)
	The Script Component
	Java + Script != JavaScript

	Accessing your own Java classes
	Instantiating the classes using the Config Editor
	Runtime instantiation of the classes

	Scripting in JavaScript
	Using instantiating a Java class

	Using binary values in scripting
	Using date values in scripting
	Using floating point values in scripting
	Examples

	Hooks
	Enabling or disabling Hooks
	Override Hooks
	Error Hooks
	List of Hooks
	Connectors
	Function Components
	AssemblyLines

	Server Hooks
	Calling Server Hooks from script

	Deltas
	Unique attribute
	Delta flags
	Deltas and compute changes
	Computed Changes
	Examples

	Delta process
	Delete Entry
	Modify Entry
	Add Entry
	Unchanged Entry

	Delta Table structures
	Delta Systable
	Delta Table

	System Store
	Configure RDBMS database servers as System Store
	Oracle
	MS SQL Server
	DB2

	User Property Store
	Delta Store
	Checkpoint/Restart Store
	Store Factory methods
	Property Store methods
	UserFunctions (system object) methods

	Property Store
	Inheritance
	Attribute Mapping
	Null Behavior
	Conn object

	Important Config and system objects
	Controlling the number of threads
	Using global system properties
	Using scripting

	Checkpoint/Restart
	Saving and storing AssemblyLine state information
	Limitations
	Restart implications
	Restart actions
	Iterator Connectors
	AddOnly Connectors

	The Config
	Remote Configs
	Parameter substitution with Expressions
	User-defined Property Stores
	Advanced parameter substitution

	Include/Namespaces
	Securing Configs, passwords and sensitive data
	Default and user-defined parameter protection
	New methods in the API

	Expressions
	Expressions in component parameters
	Expressions in LinkCriteria
	Expressions in Branches, Loops and Switch/Case
	Scripting with Expressions

	Secure Sockets Layer support
	Securing the connection between IBM Tivoli Directory Integrator 6.1 and servers with SSL (IBM Tivoli Directory Integrator as a client)
	Securing the connection between client and IBM Tivoli Directory Integrator 6.1 with SSL (IBM Tivoli Directory Integrator as a server)
	IBM Tivoli Directory Integrator and Microsoft Active Directory SSL configuration
	Obtaining a secure JDBC connection in an IBM Tivoli Directory Integrator 6.1 AssemblyLine using IDS Server
	IDS Server
	Using IBM Tivoli Directory Integrator JDBC connector to access IDS Server
	Enabling SSL
	Summary

	Obtaining a secure JDBC connection in an IBM Tivoli Directory Integrator 6.1 AssemblyLine using NetDirect JDataConnect
	NetDirect JDataConnect Software
	Using IBM Tivoli Directory Integrator JDBC connector to access JDataConnect
	Summary

	Chapter 3. The Config Editor
	Config Editor Interface
	Main panel
	Solution Directory
	Java Libraries
	Java Properties
	Includes
	Properties
	System Store
	Preferences
	File Settings
	Editor Settings
	Appearance
	Misc Settings

	Resources

	Using the Config Editor
	List controls
	Tab controls
	Keyboard controls
	Moving between details windows
	Main menu selections
	File
	Object
	Store
	Remote
	Window
	Tools
	Help

	Script editor windows

	Configurations (Config)
	Creating a new Config
	Opening an existing Config
	Saving a Config
	Renaming a Config
	Closing a Config
	Copying elements between open Configs (or folders)
	Config folder management
	Config Folder
	Creating new elements (AssemblyLines, Connectors, Parsers, and so forth)
	Deleting existing folders or Config elements (AssemblyLines, Connectors, Parsers, and so forth)
	Navigating the left navigation panel
	Show the details of an element in the Config Browser
	Renaming a folder or Config element

	Packaging, Library and Reports
	Packaging

	Library
	Config and AssemblyLine Reports

	AssemblyLines
	Managing AssemblyLines
	AssemblyLine configuration
	Hooks
	Data Flow
	Config ...
	Operations
	Checkpoint
	Sandbox
	Logging
	Description

	Testing AssemblyLines
	Debugging
	The IBM Tivoli Directory Integrator Debugger
	Debugging an AssemblyLine
	Logging and debugging

	Working with AssemblyLine files before processing is completed
	AssemblyLine Reports

	Connectors
	Connector management
	Using Connectors in AssemblyLines (AssemblyLine Connectors)
	Setting up a Connector
	Configuring a Connector
	Setting up the Attribute Map
	Connection Errors
	Connector Pooling
	Hooks
	Delta
	Description

	Library Connectors
	Scripted Connectors

	Parsers
	Script Library
	Properties
	Configuration
	Editor
	Connector tab

	Java Libraries
	Preferences

	Includes
	Parameter Substitution
	Properties
	Advanced Parameter Substitution with Expressions
	Expresions Editor
	Expression formatting
	Examples
	Schema

	Logging
	Log Levels

	Parameter labels in the Connector and Parser panels

	Chapter 4. Web Services Suite
	TDI WS Suite philosophy
	Components and tools
	Usage and scenarios
	Simple or Complex Types
	Simple or Customized workflow
	Using the WS Suite
	Simple usage
	Advanced usage

	WS Suite Considerations
	WS Provisioning and WS Trust
	Mapping Java class names to WS-Provisioning XSD types
	wsprov.jar file contents
	WS-Provisioning examples

	Chapter 5. TDI Examples
	Scripted Outlook Connector using COMProxy
	Example code
	See also

	JavaScript Connector
	Example code
	See also

	JavaScript Parser
	Example code
	See also

	Writing a new Connector Interface
	Script-based Connector
	Java-based Connector

	Copying directories with the LDAP Connector

	Chapter 6. TDI Command line options
	Config Editor
	Server
	Command Line Interface (CLI)

	Appendix A. Enhancements and changes in 6.1
	Introduction
	Compatibility
	Replace of Rhino JavaScript with IBMJS
	TMSXML format for all messages
	Cloudscape/Derby upgrade

	Tombstones
	New Hooks
	New Hooks for Function Components
	Operation Abandon Hook
	Changes for Add operations (AddOnly and Update modes):
	Changes for modify operations (Update mode):

	JavaScript
	Improved error messages
	No support of script languages other then JavaScript

	Library Loader enhancements
	Custom specification of JAR files
	Restructuring of the TDI “jars” sub-directory

	TDI Server Hooks
	Loop/Branch/Switch
	Improve termination and cleanup for critical errors
	Custom exit/return codes
	Access via TDI API calls

	Securing Configs, passwords and sensitive data
	Default and user-defined parameter protection
	New API methods

	Sensitive data in logs and traces
	Autocommit for the Delta Engine
	Server API Notification Enhancements
	Server API Script Object
	Remote Config Editing
	TDI Config Folder
	Load for editing
	Configuration locking
	Load for editing with temporary Config Instance
	New Server API event for configuration update
	New API calls
	Server shutdown event
	Custom server API event notifications
	Authentication
	Remote Config Editor SSL Enhancement
	Server API Authentication Exception
	Server API JMX layer does not support custom authentication

	External properties file from command line
	Logging and Problem Determination Enhancements
	Character encoding for all File Appenders
	Custom Appender support
	Log4j logs folder
	Miscellaneous Problem Determination Enhancements

	Connector Pooling
	Enhance Connector Initialization Failure Handling
	Disabling AssemblyLine components via the Task Call Block (TCB)
	AssemblyLine Operations
	Defining AL Operations
	Calling AL Operations
	AssemblyLine Function Component
	AssemblyLine Connector
	Using operations from JavaScript

	Resource Library
	Publishing AssemblyLines (Adapters)
	Publishing a package

	EventHandler transition
	Library Feature and Copy/Paste for Attribute Maps
	Copy/Paste of Attributes

	Copy/Paste for Config objects
	System Queue
	System Queue Connector

	Complex XML Handlers
	Command Line Interface (CLI)
	Config Reports
	Property Store Framework
	Accessing Properties from JavaScript

	Expressions
	Java Function Component
	General Enhancements to TCP-based objects
	SSL support enhancements
	TCP headers as Attribute values
	TCP Connection Backlog parameter

	Secure Remote Command Line FC
	DSML v2 enhancements
	SendEMail Function Component
	Common Base Event (CBE) Function Component
	JDBC Connector enhancements
	JMS Connector supports other JMS providers
	HTTP Server Connector enhancements
	AssemblyLine Connector and Function Component
	FTP Connector
	Harmonized Change Detection handling
	Administration and Monitoring Console
	New Java version
	AssemblyLine Debugger
	Password Change Plugins
	Response section removed from AssemblyLine Flow
	TDI can be started as more then one Windows service
	Iterators can be used in Flow section
	Custom Method invocation

	Appendix B. Using CloudScape database
	Embedded CloudScape
	Overriding the CloudScape defaults

	Appendix C. Increasing the memory available to the Virtual Machine
	Appendix D. Double byte character sets in IBM Tivoli Directory Integrator
	Appendix E. Dictionary of terms
	IBM Tivoli Directory Integrator terms

	Appendix F. Notices
	Trademarks

